
ÓPTICA PURA Y APLICADA 
www.sedoptica.es  

 

Opt. Pura Apl. 55 (1) 51102 (2022)  © Sociedad Española de Óptica  
 

1 

Type:  TUTORIAL PAPER 
Section: SENSOR AND PHOTONICS DEVICES 

 

Spectral modeling of resonant photonic 
integrated circuits: tutorial 

 
Modelamiento espectral de circuitos fotónicos 

integrados resonantes: tutorial 
 

Juan José Arango (1,2,*) and Pedro Torres (1,2) 
1. Escuela de Física, Universidad Nacional de Colombia – Sede Medellín. 

2. Miembro de la Sociedad Red Colombiana de Óptica. 
(*) E-mail: jujarangour@unal.edu.co 

 
Received: 17/01/2022 Accepted: 27/02/2022 

DOI: 10.7149/OPA.55.1.51102 

ABSTRACT: 

Current developments in integrated photonics require the design of new integrated structures and the 
execution of multiple optimization cycles, for which accessible and flexible modeling techniques 
represent essential tools. Commonly used in engineering for modeling complex systems, transfer 
matrices are simple and powerful tools that may be implemented for the simulation of circuit- and 
system-level photonic elements. In this tutorial, we present a detailed description of a modeling 
methodology based on signal-flow graphs and transfer matrices that successfully predicts the spectral 
behavior of resonant photonic circuits. Every stage of the modeling process is comprehensively 
elaborated in the tutorial, with the aim that it serves as a starting guide for new researchers in the 
field. Validation results are presented for demonstrating the accuracy of the model in reproducing 
published benchmarks, and several studies are carried out to illustrate model’s scope. In addition to 
the basic theoretical and practical considerations required for the construction of photonic circuit 
models, an open-source Python-based software is provided, enabling the immediate implementation 
of described techniques and their use as baseline for advanced studies and designs. 
Key words: Photonic integrated circuit; spectral modeling; signal-flow graph; transfer matrix;   
open-source software. 

RESUMEN: 

Los desarrollos actuales en fotónica integrada requieren el diseño de nuevas estructuras integradas y 
la ejecución de múltiples ciclos de optimización, para lo cual técnicas de modelamiento accesibles y 
flexibles representan herramientas esenciales. Comúnmente utilizadas en ingeniería para el 
modelamiento de sistemas complejos, las matrices de transferencia son instrumentos simples y 
poderosos que pueden implementarse en la simulación de elementos fotónicos a nivel de circuito y 
sistema. En este tutorial presentamos una descripción detallada de una metodología de modelamiento 
basada en grafos de flujo de señal y matrices de transferencia que predice exitosamente el 
comportamiento espectral de circuitos fotónicos resonantes. Cada etapa del proceso de modelamiento 
se detalla exhaustivamente en el tutorial, con la intención de que este sirva como guía introductoria 
para nuevos investigadores en el área. Se presentan resultados de validación demostrando la exactitud 
del modelo para reproducir resultados publicados de referencia, y se realizan varios estudios 
ilustrando el alcance del modelo. En adición a las consideraciones básicas teóricas y prácticas 
requeridas para la construcción de modelos de circuitos fotónicos, se provee un software de acceso 
abierto basado en Python, permitiendo la implementación inmediata de las técnicas descritas y su uso 
como punto de partida para estudios y diseños avanzados. 
Palabras clave: Circuito fotónico integrado; modelamiento espectral; grafo de flujo de señal; matriz 
de transferencia; software de acceso abierto. 
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1. Introduction 
Integrated photonics is a flourishing industry and research field that harness modern optoelectronics 
maturity, forefront techniques in nanotechnology, and installed microelectronics infrastructure, to transfer 
the extensive available knowledge in photonic science to the development of devices and systems that fully 
operate on photonic integrated chips [1, 2]. The growing availability of these integrated platforms has 
enabled the extension of photonic technology capacities and the consequent amplification of their impact, 
since they provide an ideal setting for the construction of applications with high hardware density demands, 
strict control of external conditions and strong reliance on light-matter interaction; also streamlining the 
conversion of prototypes into commercial products, by scaling up the fabrication reproducibility and 
reducing the costs per device [3, 4]. Many integrated photonic technologies are already serving society, in 
different areas, such as data communication [5, 6], medical monitoring and diagnosis [7-9], or augmented 
reality [10], and new promising application fields are under active development [11-14]. 

However, in order to meet the expectations posed on next generations of integrated devices, overcoming 
several technical barriers is essential. For instance, constraints derived from the strong reliance of circuit 
performance on small fabrication errors need to be relaxed, the compatibility of different material platforms 
and the possibility of transitioning towards different frequency bands need to be enabled, and novel devices 
meeting the exigent demands of the ongoing quantum revolution need to be developed. These open 
challenges raise interests on the generation of integrated solutions in both the device and circuit levels, and 
require the conception, design and optimization of new structures and architectures. For contributing to 
this process, simulation and modeling tools are required for the assessment and tuning of proposed 
solutions performance [15], which motivates the presentation of this tutorial that aims to provide technical 
orientation and an open-source design tool that could facilitate further studies on these systems. The model 
employed in this tutorial is derived from a semi-analytical approach and takes advantage of a signal-flow 
graph-assisted technique, which simplifies the systematic integration of independent transfer matrix-based 
descriptions of multiple individual components. The tutorial is intended to serve as baseline for researchers 
starting projects in the field, as it details the theoretical framework and practical strategies upon which the 
proposed design workflow is supported, provides access to the photonic design software used for the 
generation of presented results, and suggests an extensive set of literature resources for further reference. 
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Among the wide set of components used in the composition of photonic integrated circuits (PIC) [16, 17], 
photonic resonators are traditional devices, pervasively used in the design of conventional and new 
solutions due to their high sensitivity and capacities for power concentration, spectral filtering and signal 
processing [18, 19]. Their versatility and areas of application have been broadened by means of the 
composition of resonant structures comprising multiple coupled resonators (i.e., photonic molecules) [20-
22]. Current interest in the study and exploitation of this kind of circuits has been taken into consideration, 
hence the focus on resonant structures of this work. 

Recent progress in nanophotonics has extended the variety of integrated resonators that may serve as 
specialized cavities, intended for specific advanced tasks. The consideration of these sophisticated 
structures is possible under the scope of this work if their optical behavior is accurately described by 
transfer matrices [23]. Nevertheless, our approach is primarily dedicated to complex resonant systems 
made up of conventional integrated structures, supplied by most of PIC foundries and whose fabrication is 
already refined. Three of these systems are shown in Figure 1 and will be presented as study cases 
throughout the tutorial. Figure 1(a) illustrates a coupled-resonator optical waveguide (CROW), which 
consists of a set of serially coupled microring resonators, that is waveguide-coupled at both ends. This 
system has several output ports. In this work we will analyze the signal obtained at the end of the power 
supply waveguide, commonly known as through port, and the one obtained at the opposite-side 
waveguide’s facet that receives most of the decoupled power, known as drop port. Figure 1(b) presents a 
cascaded Sagnac loop reflectors (CSLR) resonator. It is made up of a series of reflectors like the one 
presented in Figure 2(a), whose mirror character is provided by the evanescent coupler at the bottom of 
the loop. Figure 1(c) illustrates an array of coupled microring resonators in a flower-like configuration in 
which there is effective coupling between all adjacent resonators. This flower-like system is laterally 
waveguide-coupled for power supply and signal probing. CROW and CSLR study cases take the studies 
conducted by Poon et. al.  [24] and Wu et. al. [25] as benchmarks for model validation purposes. Thereby, 
circuits parameters have been set accordingly. 

 
Fig. 1. Examples of photonic integrated circuits, used as study cases throughout this tutorial. (a) Coupled-resonator optical 

waveguide. (b) Cascaded Sagnac loop reflectors resonator. (c) Flower-like photonic molecule. 

These study cases are taken as common thread for presenting a complete modeling workflow, going from 
the basic theoretical considerations to the use of an in-house software for the realization of different 
spectral analyses. In this way, Section 2 presents the analytical descriptions of basic photonic components 
that are used later to build more complex systems; Section 3 describes a numerical methodology for 
obtaining the parameters that characterize each basic component; Section 4 introduces the concept of 
signal-flow graph as an ancillary structure to systematize the analysis of arbitrary designs and its use for 
computing photonic circuit’s stationary state; Section 5 provides the instructions for getting access to the 
open software published along with this work; and Section 6 discusses the obtained results on the spectral 
behavior of studied systems, providing a general outlook of the scope of the model. Conclusions are included 
at the end, summarizing the highlights of the tutorial. 

 
2. Building blocks models 
This tutorial concentrates on resonant circuits comprising rectangular waveguides and evanescent 
couplers; thereby, their operation can be easily decomposed in the contributions of these basic components, 
as suggested by the diagram presented in Figure 2. Theoretical models are presented below for these 
components, which are used in section 4 as building blocks for the construction of entire circuits 
descriptions. 
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Fig. 2. (a) Integrated Sagnac loop reflector. (b) Integrated Sagnac loop reflector schematically broken down into its basic 

components: waveguides and couplers. 

For the sake of clarity and general practicality, several assumptions are made to simplify the presentation 
of the main concepts, while focusing on the operation conditions more commonly preferred. In this way, 
linear, passive, single-mode and stationary operation is assumed for all the waveguides. In addition, 
materials are considered to have low dispersion and frequency-independent losses, which may be directly 
assumed in narrowband studies. These conditions may appear to be very restrictive, but the operating 
regimes of many integrated photonic technologies comply with them. In any case, the model can be 
upgraded while preserving the same approach for taking into account the coupling of the fundamental mode 
with high-order modes, or by introducing the information of frequency-dependent material properties. 
Thus, this tutorial may serve as basis for the further development of more sophisticated models, tailored 
according to research or technology needs. 

2.a. Waveguides. 
Integrated waveguides are planar photonic structures, whose dielectric profile allows the confinement of 
light via total internal reflection, and rectangular waveguides are the most common choice for photonic 
integrated circuits (Figure 3). To have an accurate description of their contribution to the integrated circuit 
behavior it is relevant to study the phase-shift and power attenuation rates that guided light experiences. 

 
Fig. 3. Planar waveguides examples. (a) Strip waveguide. (b) Buried strip waveguide. (c) Rib waveguide. (d) Slot waveguide. 

According to their properties, waveguides only provide effective guiding to a specific set of supported 
modes, associated with geometric configurations of the electromagnetic field that ensure the replication of 
the wave as it propagates (i.e., self-consistency condition), imposing fixed relations between spatial and 
temporal periodicity of the radiation (i.e., dispersion relations). Waveguide propagation modes thus appear 
as eigenvectors of the eigenvalue problem that arises from the establishment of the continuity relations and 
the dielectric profile of the guiding structure in the application of Maxwell’s equations for solutions that 
preserve their transversal configuration [26]. For lossless straight waveguides, these solutions have the 
following form for the transversal field: 

ℰ⃗𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = 𝐸𝐸�⃗ 𝑇𝑇(𝑥𝑥,𝑦𝑦)𝑒𝑒−𝑖𝑖β𝑧𝑧𝑒𝑒𝑖𝑖ω𝑡𝑡  = 𝐴𝐴(𝑧𝑧) 𝑒𝑒𝑇𝑇(𝑥𝑥,𝑦𝑦) 𝑒𝑒𝑖𝑖ω𝑡𝑡, (1) 

where 𝐴𝐴(𝑧𝑧), β and ω are the complex amplitude of the propagating mode, its propagation constant, and light 
signal frequency, respectively. e�⃗ 𝑇𝑇(𝑥𝑥,𝑦𝑦) is the normalized vector function that stores the information about 
mode’s characteristic polarization distribution. 

With  𝐸𝐸�⃗ T(𝑥𝑥,𝑦𝑦) = 𝐸𝐸𝑥𝑥𝑥𝑥� + 𝐸𝐸𝑦𝑦𝑦𝑦�, the quasi-TE and quasi-TM modes of the eigenvalue problem can be formulated 
as follows [27]: 
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∂
∂𝑥𝑥

�
1

𝑛𝑛2(𝑥𝑥,𝑦𝑦)  
∂
∂𝑥𝑥

(𝑛𝑛2(𝑥𝑥,𝑦𝑦)𝐸𝐸𝑥𝑥)� +
∂2𝐸𝐸𝑥𝑥
∂𝑦𝑦2

+ 𝑛𝑛2(𝑥𝑥,𝑦𝑦)𝑘𝑘02𝐸𝐸𝑥𝑥 = β𝑇𝑇𝑇𝑇2 𝐸𝐸𝑥𝑥 , (2) 

∂
∂𝑦𝑦

�
1

𝑛𝑛2(𝑥𝑥,𝑦𝑦)  
∂
∂𝑦𝑦

�𝑛𝑛2(𝑥𝑥,𝑦𝑦)𝐸𝐸𝑦𝑦�� +
∂2𝐸𝐸𝑦𝑦
∂𝑥𝑥2

+ 𝑛𝑛2(𝑥𝑥,𝑦𝑦)𝑘𝑘02𝐸𝐸𝑦𝑦 = β𝑇𝑇𝑇𝑇2 𝐸𝐸𝑦𝑦 ; (3) 

where 𝑘𝑘0 = 2π/λ0 represents the wavenumber, λ0 is the vacuum wavelength, and n(𝑥𝑥,𝑦𝑦) corresponds to 
the refractive index profile. It is clear that ω and β are characteristic quantities that inform about the 
temporal and spatial phase-shift rate of the mode. Therefore, their ratio stores the information about the 
effective phase velocity at which modal wavefronts propagate. Then, it is natural that the effective index of 
the mode is defined as 

𝑛𝑛eff ≔
𝑐𝑐

(𝜔𝜔/𝛽𝛽) =
𝛽𝛽
𝑘𝑘0

, (4) 

being 𝑣𝑣𝑝𝑝 = ω/β the modal phase velocity. For certain propagation length L, the evolution of the phase of the 
guided mode can be calculated as 

Δφ = β𝐿𝐿 = 𝑛𝑛eff 𝑘𝑘0L . (5) 

Both β and 𝑛𝑛eff can be used to unambiguously identify certain mode, and their relationship with frequency 
(i.e., dispersion) may be engineered by adjusting waveguide materials properties or geometry [28]. 

In relation to power attenuation, modes may lose their carried energy via different mechanisms. Thus, 
losses can have absorptive, scattering, and radiative nature. Linear absorption is associated with the 
ordinary interaction of light with the material and will be as low as material transparency allows within the 
operation frequency band. Scattering losses are provoked by fabrication defects, namely, impurities or 
surface roughness; thereby, their intervention in device operation is modelled stochastically. Radiative 
losses are associated with light decoupling from the guiding structure as a consequence of disturbances in 
the confining dielectric profile, such as bends or the presence of new structures near to the waveguide core. 
The contributions of these loss mechanisms to power decay can be included into a single attenuation 
coefficient α as [29] 

α = α𝑎𝑎𝑎𝑎𝑎𝑎 + α𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + α𝑟𝑟𝑟𝑟𝑟𝑟 . (6) 

As a result, the evolution of the complex amplitude associated to an attenuated single-mode propagation in 
a waveguide is described by 

𝐴𝐴(𝐿𝐿) = 𝐴𝐴0 𝑒𝑒𝑖𝑖Δφ 𝑒𝑒−α𝐿𝐿 = 𝐴𝐴0 𝑒𝑒𝑖𝑖(β+𝑖𝑖α)𝐿𝐿 = 𝐴𝐴0 𝑒𝑒𝑖𝑖β�𝐿𝐿 , (7) 

which entails a Beer-Lambert power decay and a harmonic phase progression. To obtain a more condensed 
formulation of the modal propagation description, a generalized complex propagation constant is 
commonly defined as β� = β + 𝑖𝑖α, whose real and imaginary parts account for the mode phase evolution and 
amplitude attenuation rates, respectively. 

If waveguides are bent, they keep the capacity of guiding their eigenmodes, whose wavefronts rotate as they 
propagate so that the traveling direction remains parallel to the walls of the waveguide. It is worth to 
remark that the perturbation introduced by the bend alters the effective index and confinement capacity of 
the structure, implying that the modes of bent waveguides have an intrinsic lossy character [27, 30]. In 
consequence, radii of curvature should be designed large enough to avoid significant deviations of the 
effective index and loss rate of the straight counterpart. Considering that this condition needs to be fulfilled 
in the design processes covered by this tutorial, the mismatch between straight and bent waveguides 
effective indices will be disregarded, and if the radiative losses associated to the bends are significant, they 
may be included into the waveguide attenuation coefficient (equation 6). 
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2.b. Couplers. 
Integrated couplers are used for transferring power from one waveguide to another. This is usually 
performed by approaching a waveguide to the vicinity to the other, so that the evanescent fields of the 
propagation mode supported by the waveguide can reach the core of the neighbor waveguide and serve as 
a channel that supplies optical power [31], in analogy with tunnelling effects between quantum wells. The 
electromagnetic details of the interplay between coupled waveguide modes can be described from several 
approaches, such as Coupled Mode Theory [32] and Eigenmode Expansion Methods [33]. However, even if 
the coupler was analytically, numerically or experimentally characterized, the information of its operation 
can be encoded in transfer matrices [34]. In this approach, incoming and outgoing waveguides are treated 
as input and output ports of a linear system and get related by scalar values stored in the transfer matrix 
(T-matrix) associated to the coupler. Complex amplitudes of signals at each port of a coupler, as the one 
shown in Figure 4, are thus related by the T-matrix presented in equation (8). 

�
𝑎𝑎1𝑜𝑜𝑜𝑜𝑜𝑜
𝑎𝑎2𝑜𝑜𝑜𝑜𝑜𝑜

� = 𝐓𝐓 �
𝑎𝑎1𝑖𝑖𝑖𝑖
𝑎𝑎2𝑖𝑖𝑖𝑖

� = �𝑇𝑇11 𝑇𝑇12
𝑇𝑇21 𝑇𝑇22

� �
𝑎𝑎1𝑖𝑖𝑖𝑖
𝑎𝑎2𝑖𝑖𝑖𝑖

� . (8) 

T-matrix elements are not independent, but the relationships they hold are determined by the requirements 
of energy conservation and reciprocity, whose implications are briefly elaborated below.  

 
Fig. 4. 2⨯2 evanescent coupler. Depicted arrows and transfer factors indicate the relations between the complex amplitudes of 

output and input signals. 

If the coupler is assumed to be lossless, power balance provides the first relation between coupled modes 
amplitudes: 

∑  𝑃𝑃𝑗𝑗𝑖𝑖𝑖𝑖𝑗𝑗=1,2 = ∑  𝑃𝑃𝑗𝑗𝑜𝑜𝑜𝑜𝑜𝑜𝑗𝑗=1,2  , (9) 

�𝑎𝑎1𝑖𝑖𝑖𝑖�
2 + �𝑎𝑎2𝑖𝑖𝑖𝑖�

2 = �𝑎𝑎1𝑜𝑜𝑜𝑜𝑜𝑜�
2 + �𝑎𝑎2𝑜𝑜𝑜𝑜𝑜𝑜�

2 . (10) 

Reciprocity implies that if output fields were time-reversed, light would be assembled back into original 
(reversed) input fields. This is possible if 𝐓𝐓 is invertible, so that 

�
𝑎𝑎1𝑖𝑖𝑖𝑖
𝑎𝑎2𝑖𝑖𝑖𝑖

� = 𝐓𝐓−1 �
𝑎𝑎1𝑜𝑜𝑜𝑜𝑜𝑜
𝑎𝑎2𝑜𝑜𝑜𝑜𝑜𝑜

� = 1
𝑑𝑑𝑑𝑑𝑑𝑑(𝐓𝐓)

� 𝑇𝑇22 −𝑇𝑇12
−𝑇𝑇21 𝑇𝑇11

� �
𝑎𝑎1𝑜𝑜𝑜𝑜𝑜𝑜
𝑎𝑎2𝑜𝑜𝑜𝑜𝑜𝑜

� ,    (𝑇𝑇11𝑇𝑇22 − 𝑇𝑇12𝑇𝑇21) ≠ 0 . (11) 

If 𝑎𝑎1𝑜𝑜𝑜𝑜𝑜𝑜and 𝑎𝑎2𝑜𝑜𝑜𝑜𝑜𝑜 are replaced in (10) by using the relation with 𝑎𝑎1inand 𝑎𝑎2in given by (8), and 𝑎𝑎1inand 𝑎𝑎2in 
are replaced in (10) by using the relation with 𝑎𝑎1𝑜𝑜𝑜𝑜𝑜𝑜and 𝑎𝑎2𝑜𝑜𝑜𝑜𝑜𝑜 given by (11), the following constraints are 
found 

|𝑇𝑇11|2 = |𝑇𝑇22|2;   |𝑇𝑇12|2 = |𝑇𝑇21|2; (12) 

ϕ11 + ϕ22 = 2𝑝𝑝π;    ϕ12 + ϕ21 + π = 2𝑞𝑞π;    (13) 

𝑇𝑇11𝑇𝑇22 −  𝑇𝑇12𝑇𝑇21 = 1; (14) 
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where 𝑝𝑝 and 𝑞𝑞  are integers, and 𝜙𝜙jk = Arg{𝑇𝑇jk}. A similar derivation is presented in the appendix of 
reference [31]. 

These conditions that T-matrix entries have to fulfill are summarized in the T-matrix formulation [35] 

𝐓𝐓 = � 𝑡𝑡 𝜅𝜅
−𝜅𝜅∗ 𝑡𝑡∗� ,  |𝑡𝑡|

2 + |𝜅𝜅|2 = 1,   (𝑡𝑡, 𝜅𝜅 ∈ 𝒞𝒞). (15) 

As explained in [36], a simplified form of equation (15) can be obtained from the assumption that the phase 
induced by the coupling is symmetrical between waveguides, so that T-matrix can be presented as 

𝐓𝐓 = � 𝑡𝑡 𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖 𝑡𝑡 � ,   𝑡𝑡

2 + 𝜅𝜅2 = 1,   (𝑡𝑡,𝜅𝜅 ∈ ℛ𝑒𝑒). (16) 

Since coupler transmission and coupling coefficients, 𝑡𝑡 and 𝜅𝜅, are bound, determining one of these will 
provide enough information for characterizing the lossless coupling between identical waveguides. This is 
the type of coupler that will be assumed in next studies, and a recurrent approximation in integrated circuits 
modeling. 

 
3. Determination of parameters 
The models presented in section 2 establish how the design parameters of modelled devices (i.e., α, β and 
𝜅𝜅)  affect their optical behaviour. However, to fabricate a device according to certain design, or to predict 
the response of an already fabricated device, it is important to connect design parameters with fabrication 
specifications. To obtain this connection, several strategies can be employed, whose validity depends on the 
applicability of their assumptions in the context of the studied system. 

Multiple analytical approaches have been devised for estimating the dispersion relations of waveguides 
[26], curvature-induced radiative losses in bends [30], and the coupling coefficients in directional or 
adiabatic couplers [37]. These approaches make it possible to have a fully analytical solution of the global 
system, with which the influence of every fabrication parameter can be clearly traced back. However, they 
usually imply approximations that are held for quite specific configurations, so it is unpractical to rely on 
these models only. 

Other possibility for characterizing the devices is to perform direct experimental measurements that may 
allow for the parameter extraction [34, 38], certainly the most adequate option for modeling reproducible 
devices, such as those fabricated in production lines with standardized manufacturing processes. 
Nevertheless, the execution of these experiments for research purposes entails high costs, is time-
consuming and depends on the technological availability of the structures being modelled. 

Another alternative for characterizing the building blocks for the circuit design process is to calculate the 
parameters by running electromagnetic simulations for the devices under consideration. As example of the 
information that may be obtained following this strategy, the results of several Finite Element Method 
(FEM) simulations in the frequency domain are presented below. 

Figure 5 shows the results of computing the fundamental quasi-TE mode of a rectangular 450 nm × 220 nm 
waveguide, with material properties set for silicon-on-insulator (SOI) platform. Figure 5(a) plots the mode 
effective index against wavelength, and Figure 5(b) illustrates the distribution of the electric field norm of 
the fundamental mode. A unitary vector field has been superimposed, with the aim of indicating the 
transverse polarization distribution as well. 

Figure 6 presents another numerical study that was performed for obtaining the order of magnitude of the 
losses introduced by circular bends of different radii. Several bends were arranged serially, and the power 
output was calculated after stationary propagation throughout 20 bends of 90 degrees, keeping a fixed 
wavelength value of λ0=1.55 μm. This allowed to estimate the loss associated to every 90°-turn. From Figure 
6(a) it is possible to infer that the losses increase exponentially as the radius of curvature is reduced. Figure 
6(b) shows the electric field norm distribution, and it is evident that for the smaller radius case the losses 
are more notorious (the same color scale was used for both visualizations). 
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For coupling coefficient estimation, a pair of circularly bent waveguides were simulated as they were 
located at different relative distances. As expected, as the gap increases the coupling ratio attained decays 
exponentially. Another relevant variable to take into consideration is the radius of coupled bends, since 
larger radii allow the interaction of the two modes to be effective along longer distances. Figure 7(a) 
presents the results of power transmission obtained at the output port, indicating the amount of power that 
was decoupled from the supply waveguide. The relationships of coupling efficiency with gap and curvature 
radius are evident. Figure 7(b) shows the electric field norm distribution for couplers with different gaps, 
preserving a radius of 10 𝜇𝜇m.  

Electric field norm distributions (Fig. 5-7) remain valid for any input power. Thus, color scales are arbitrary. 

       
Fig. 5. FEM simulation results for the transverse field of the quasi-TE mode of a rectangular SOI strip buried waveguide. (a) Effective 

index dependence on mode’s frequency (vacuum wavelength). (b) Electric field norm and transverse polarization distributions. 

      
Fig. 6. FEM simulation results for losses in SOI meandering waveguides (λ0=1.55 μm). (a) Bend losses (dB/turn) dependence on bend 

curvature.  (b) Electric field norm distribution of light propagating throughout meandering waveguides with 2.51 μm radius of 
curvature (upper) and 4.02 μm radius of curvature (lower). 

      
Fig. 7. FEM simulation results for coupling efficiency of a coupler comprising two coupled waveguide bends with identical radius of 
curvature (λ0=1.55 μm). (a) Dependence of the decoupled power on separation gap and radius of curvature. Power transmission is 

normalized with respect to the input signal, hence the use of arbitrary units (a.u.).  (b) Electric field norm distribution of light at 
coupler with 10 μm radius of curvature and separation gap of 459 nm, 377 nm, 173 nm and 50 nm (from upper left to lower right). 
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4. Signal-flow graphs and adjacency matrices 
Having established the models accounting for individual components, the global operation of the circuit (i.e., 
the global transfer function) can be obtained by linking all the local transfer conditions, which are provided 
by the transfer equations of all the building blocks that the circuit comprises. If all conditions are 
simultaneously imposed in an extended equation system, its solution would represent the complex 
amplitudes of the signal flowing within the photonic circuit at stationary regime. Instead of proceeding with 
a direct algebraic procedure, it is convenient to define a graph-based general workflow, aiming at 
developing a systematic protocol for the analysis of circuits with arbitrary design, suited for developing a 
software design tool. Besides, the use of graph structures for encoding photonic circuit properties paves the 
way for further model upgrades that may exploit graph theory concepts and algorithms. 

Signal-flow graphs are graphical representations of systems, especially suitable for signal evolution studies. 
Commonly used for solving electrical, control and automation engineering problems, they have also been 
applied in the modeling of photonic circuits and systems [39, 40], as they offer a useful scalar way of tracking 
optical signal amplitude and phase. Signal-flow graphs represent modelled devices by decomposing them 
into discrete evaluation points, represented as graph vertices, or nodes, at which the signal is locally 
evaluated. The nodes are chosen in a way such that the signal transfer relations between nodes are 
independent, so that the transferred signal from a node to another relies only on signal’s evaluation at the 
starting node. All nodes sharing an allowed signal-flow path, are connected by directed edges, or branches, 
whose associated complex-valued weight and orientation determine the signal transfer relation and flow 
direction respectively [41, 42]. Transfer relations are in general complex-valued functions and may be 
parametrized by device design specifications. Transfer functions between two nodes, referred below as 
local transfer functions, are defined as the quotient of the complex amplitudes of the optical signal evaluated 
in such nodes. For our purposes, waveguides and couplers ports will be used as evaluation nodes. 

The translation of the photonic basic elements within the graph-based framework is illustrated in Figure 8. 
Single-mode waveguides may be represented by single directed edges, as shown in Figure 8(a), having 
associated a weight accounting for the corresponding phase and amplitude evolution coefficients, given by 
(5), (6) and (7). Figure 8(b) shows the graph representation for couplers, similar to the one presented in 
section 2.b (see Figure 4). Additional structures are displayed in Figure 8(c), namely, a three-waveguide 
coupler and an integrated distributed Bragg reflector (DBR). These are common components in integrated 
photonic circuits, and they may be characterized with a T-matrix, as demonstrated in [43] and [44]. Thus, 
they may be incorporated in signal-flow graph models as well, but their study is out of the scope of this 
work. 

 
Fig. 8. Basic photonic components and equivalent graph elements. (a) Single-mode waveguides are modelled by single directed 

edges. (b) Unidirectional couplers are modelled as symmetric crossbar-like arrangement of directed edges. (c) Examples of other 
signal-flow graph-compatible photonic components, not included in the analysis carried out in this tutorial. 

The integration of previous basic graph elements allows the composition of much more complex structures, 
such as the resonators under analysis. In this way, the signal-flow graph for the Sagnac reflector, presented 
and conceptually fragmented in Figure 2, is obtained by representing its basic photonic components with 
their corresponding graph-equivalent elements, as shown in Figure 9. This chart shows that when 
counterpropagating modes are allowed by the system, the ports of the basic photonic components have 
associated a duplicate number of nodes, so that counterpropagating signal-flows get represented by 
different branches, connecting different nodes. 
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Fig. 9. Signal-flow graph representation of a Sagnac loop reflector. It is necessary to duplicate vertices for ports allowing 

counterpropagating signals, so that their information gets stored in independent graph branches. 

Following this procedure, the signal-flow graphs for the photonic circuits under consideration (Figure 1) 
are illustrated in Figure 10. Every edge of these graphs has an associated weight determined by the design 
parameters of the circuit, which are in principle independent. With the purpose of alleviating the 
visualization, bidirectional edges are used to denote counterpropagation segments (Figures 10(b) and 
10(c)), keeping in mind that formal calculations require the unfolded format already described (Figure 9), 
and node numbering has been omitted. It is worth to remark that the use of graphs with antiparallel directed 
edges connecting the same pair of nodes is not a suitable modeling alternative for counterpropagating flows, 
since doing so leads to unphysical light reversal events [45]. 

 
Fig. 10. Signal-flow graph representations of circuits modelled in the tutorial. (a) CROW graph. (b) CSLR resonator graph. (c) Flower-

like photonic molecule graph. Bidirectional edges imply a duplicate number of nodes and edges. 

Having defined the graph representing the circuit under study, and the design parameters that characterize 
the operation of its constitutive components, its global spectral behavior can be obtained by solving the 
stationary condition for the system, using the adjacency matrix 𝐀𝐀 associated with the graph [46]. This is a 
mathematical resource used to encode connectivity information of a graph in a square matrix format. It has 
as many rows and columns as nodes appearing in the graph. According to the numbering convention of the 
nodes, the nth row and column of the matrix are associated with the nth node of the graph, and its (j,k)-entry 
𝐀𝐀𝐣𝐣𝐣𝐣 corresponds to the complex-valued local transfer function associated with the directed edge starting at 
the jth node and ending at the kth node. If there is no edge connecting a pair of nodes, the corresponding 
entry takes a null value. As illustration, the adjacency matrix associated to the graph shown in Figure 9 is 
presented in Figure 11. 
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0 0 0 0 0 0 0 𝑝𝑝1 0 0 0 0
0 0 0 0 0 0 0 0 𝑝𝑝0 0 0 0
0 0 0 0 0 0 0 0 0 𝑡𝑡0 0 𝑖𝑖𝜅𝜅0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 𝑖𝑖𝜅𝜅0 0 𝑡𝑡0
0 0 0 0 0 0 0 0 0 0 0 0

 

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Fig. 11. Adjacency matrix associated to Sagnac loop reflector graph presented in Figure 9. 

Thus, the stationary condition fulfilled by the system, after reaching the steady state, can be formulated as 

𝑎⃗𝑎 = 𝑎⃗𝑎0 + 𝐀𝐀T 𝑎⃗𝑎 , (17) 

where 𝑎⃗𝑎 and 𝑎⃗𝑎0 are column vectors, such that the 𝑎𝑎𝑗𝑗 component is the stationary signal amplitude evaluated 
at the jth node, and the 𝑎𝑎0𝑗𝑗  component is the amplitude associated with constant external excitation at the 
jth node. Equation (17) implies that the superposition of external constant excitation and the image of the 
state vector under the 𝐀𝐀T transformation (transfer relations) yields the same state vector, hence the 
stationarity. Taking the transpose of the adjacency matrix is necessary for preserving the conventional 
notations for adjacency matrices and vector equations. 

Solving for the stationary signal amplitude vector 𝑎⃗𝑎, one obtains 

(𝐈𝐈 − 𝐀𝐀T) 𝑎⃗𝑎 = 𝑎⃗𝑎0; (18) 

 𝑎⃗𝑎 = (𝐈𝐈 − 𝐀𝐀T)−1 𝑎⃗𝑎0; (19) 

 𝑎⃗𝑎 = ((𝐈𝐈 − 𝐀𝐀)−1)T 𝑎⃗𝑎0. (20) 

In this way, the (j,k)-entry of 𝐓𝐓𝑐𝑐 = ((𝐈𝐈 − 𝐀𝐀)−1)T stores the global transfer relation from the kth node to the 
jth node. So, 𝐓𝐓𝑐𝑐 can be considered a global transfer matrix for the entire circuit. 

If a frequency (wavelength) sweep is performed by updating the entries of 𝐀𝐀, computing 𝑎⃗𝑎 as ω (λ0) is 
varied, the spectral behavior of the system is obtained. Since 𝑎⃗𝑎 not only contains information about the 
output node, but about every node in the defined graph, it is possible to generate the energetic and phase 
distributions of the signal within the entire circuit for every computed ω (𝜆𝜆0). 

 
5. Open software 
The models detailed in sections 2-4 were employed for developing Molecule Designer: A Python-based 
software that allows to directly calculate the transmittance spectrum and frequency-dependent phase-shift 
of a photonic circuit. It also allows to generate visualizations of the energetic and phase distributions of light 
circulating at stationary state within the circuit for any required frequency or wavelength. 

Users provide the design specifications of the circuit under study by entering the associated adjacency 
matrix in a symbolic format (i.e., with every parameter symbolized by a label), so that sweeps can be easily 
performed in the design space. For the generation of distribution graphics, it is necessary to provide 
information on the relative positions of graph nodes. It can be made just by providing an image of the graph, 
and the software will present it in a graphic interface on which users can directly click on the image 
locations that will be saved as nodes coordinates. Plots generated by Molecule Designer can be interactively 
displayed or stored in text and image formats. Graphics of distributions can be temporally displayed or 
stored in PDF files. 
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The software allows to specify the spectral band for the study and tune the sampling. It allows to select 
between frequency or wavelength formats for results generation as well. In addition, it is possible to adjust 
several settings regarding plots and graphics presentation and styles. The general appearance of Molecule 
Designer, being executed in Spyder (Scientific Python Development Environment), is illustrated in Figure 
12. 

Molecule Designer was built to be compatible with drag-and-drop circuit design environments. A similar 
open-source design tool that allows to programmatically generate circuits designs has been developed by 
Ploeg et. al. [47]. 

Molecule Designer is an open-source code, that may be accessed in Zenodo and GitHub repositories [48, 49]. 
Moreover, GitHub repository includes basic instructions for the execution and use of the program. 

 
Fig. 12. General outlook of Molecule Designer running on Spyder. Settings panel, graphical coordinate selection window and 

command line interface are displayed. 
 
6. Results 
The application of the described semi-analytical modeling approach enables the execution of multiple 
studies. Some of them were performed to analyze the spectral response of the photonic devices used as 
study cases, and the obtained results are discussed below as illustration of the scope of this model. All 
analyses were obtained with the assistance of the developed software Molecule Designer. 

Transfer matrix-based models are well suited for efficiently predicting the effect that variations of some 
design parameters would have on the performance of the device. This is demonstrated by calculating the 
spectral transmission and reflection of the cascaded Sagnac loop reflectors resonator and carrying out 
several parameters sweeps, hence, checking its reliance on coupling coefficients, loss rate, and effective 
index.  It was modelled with fixed geometric parameters and constant coupling coefficient for the central 
coupler. In this way, the separation between loops and loops’ lengths were 𝑑𝑑 = 100 μm  and 𝑙𝑙 = 129.66 μm, 
respectively (Figure 13(e)). The central coupler transmission coefficient was maintained as 𝑡𝑡2=0.97 for all 
the sweeps. As expected, the spectra in Figure 13 share the characteristic functional form that results from 
the mode splitting (i.e., modal hybridization) that occurs for pairs of coupled cavities (dimers) [50]. Figure 
13(a) presents the transmission curves predicted for different waveguide effective indices, while keeping 
losses and coupling ratios constant, with α = 55 m−1 (0.239 dB/mm) and 𝑡𝑡1 = 𝑡𝑡2 = 𝑡𝑡3=0.97. It is observed 
that the variation of the effective optical path length of the cavity produced by the effective index sweep 
shifts the wavelengths at which the resonance condition is fulfilled. In Figure 13(b), the result of varying the 
attenuation is shown, as α was swept from 500 m−1 to 1300 m−1 (2.171 dB/mm 5.646 dB/mm). In this case, 
a constant value for the effective index of 𝑛𝑛eff = 2.5802 was held, and couplers configuration was 𝑡𝑡1 = 𝑡𝑡2 =
𝑡𝑡3=0.97. It is clear from the curves set that both the transmission and peak-valley contrast increase as lower 
losses are considered. Figures 13(c-d) present the transmission and reflection of the system for different 
couplers configurations, as the equated transmission coefficients of the outermost reflectors 𝑡𝑡1 and 𝑡𝑡3 are 
swept from 0.75 to 0.99, while keeping 𝑡𝑡2=0.97. It is noticeable that by changing the coupling strength, the 
magnitude of the mode splitting (separation of the peaks) is affected, which is a typical feature of circuits 
with coupled cavities. Results presented in Figure 13(c) match with those reported by Wu et. al. in [25], in 
which a cascaded Sagnac loop reflectors resonator with the same characteristics is studied, thus serving as 
validation of the method described in this tutorial. 
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 Fig. 13. Transmission and reflection spectra computed for the CSLR resonator for different parameter sweeps. (a) Effective index 

sweep, keeping α = 55 m−1 and 𝑡𝑡1 = 𝑡𝑡2 = 𝑡𝑡3=0.97 fixed. (b) Attenuation coefficient sweep, keeping 𝑛𝑛eff = 2.5802 and 𝑡𝑡1 = 𝑡𝑡2 =
𝑡𝑡3=0.97 fixed. (c) Outermost couplers efficiency sweep (transmission), keeping α = 55 m−1,𝑛𝑛eff = 2.5802 and 𝑡𝑡2 =0.97 fixed. 

 (d) Outermost couplers efficiency sweep (reflection) , keeping α = 55 m−1,𝑛𝑛eff = 2.5802 and 𝑡𝑡2 =0.97 fixed. (e) Schematic 
representation of modelled circuit with parameters labels indicated. Separation length between reflectors and their circulation 

lengths are 𝑑𝑑 = 100 μm  and 𝑙𝑙 = 129.66 μm, respectively. 

For computing the spectra of the signal at different ports, as made for the reflection calculation in Figure 
13(d), it is necessary to consider different nodes of the corresponding graph. Under the followed modeling 
approach, this just implies an alternation of the considered entry from the computed matrix. This property 
of the models based on signal-flow graphs can be exploited for evaluating field’s power build-up factors in 
internal sectors of the circuit, for which the optical signal amplitude and phase can be calculated as functions 
of wavelength. This study was made for the 7-ring flower-like photonic molecule (Figure 1(c)), obtaining 
the results presented in Figure 14. By selecting different nodes of the graph, through-port transmission, and 
power build-up factors for clockwise and counter-clockwise propagations in the central microring were 
calculated. In addition, the phase state of the mode at each evaluation node was also obtained, using as 
reference the phase state at the entry of the circuit. All resonators were assumed to be identical, with round-
trip length 𝑙𝑙 = 2π · (15 μm), effective index 𝑛𝑛eff = 2.8 and loss rate given by α = 500 m−1 (2.171 dB/mm).  
The flower-like photonic molecule is waveguide-coupled, with a coupling ratio given by 𝜅𝜅0 = 0.5, and all the 
couplers between microrings are designed to have equal ratio, with 𝜅𝜅1 = 0.45. Figure 14(d) details the 
location at which the field is analyzed. The spectra in Figure 14 span over a wavelength range that 
corresponds to one period of the flower-like circuit spectrum, and three periods of the spectra associated 
to the individual microrings. It is interesting to notice that in contrast with the spectra associated with the 
topologies of other systems of identical coupled resonators [51], instead of appearing always the same set 
of supermodes in the vicinity of each individual resonator eigenwavelength, the mode can split in different 
sets of supermodes, which implies that by coupling microrings in this configuration, the spectrum changes 
its period. This suggests that this specific topology enables certain types of propagation loops or virtual 
cavities, with effective round-trip lengths that are not multiples of the individual microring round-trip 
length. Thus, these circuits would have associated resonance modes with out-of-the-grid periodicities 
participating in the modal hybridization that produces these spectra. In addition, it is observed from Figure 
14(b-c) that the excited supermodes have different power build-up factors for clockwise (CW) and counter-
clockwise (CCW) propagation for the same location in the circuit. CW signal builds up more power than the 
CCW one in most of the cases, but certain supermodes circulate throughout the central microring with most 
of their power going in the CCW direction. For those supermodes with comparable contribution of both CW 
and CCW propagation, standing waves are expected to appear in the analyzed microring.  
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Fig. 14. Stationary light signal spectrally probed at different locations of the flower-like photonic molecule comprising seven identical 

microrings with round-trip length 𝑙𝑙 = 2π · (15 μm), effective index 𝑛𝑛eff = 2.8 and loss rate given by α = 500 m−1. Waveguide-ring 
and ring-ring coupling efficiency is given by 𝜅𝜅0 = 0.50 and 𝜅𝜅1 = 0.45, respectively.  (a) Transmittance and phase-shift of the signal at 

output port, normalized with respect to the input signal. (b) Buildup factor and phase-shift attained by counter-clockwise 
propagation in the central microring, normalized with respect to the input signal. (c) Buildup factor and phase-shift attained by 

clockwise propagation in the central microring, normalized with respect to the input signal.  (d) Schematic representation of 
modelled circuit with parameters labels and signal probe locations indicated. 

It has been demonstrated that the methods described can provide information not just about the outgoing 
signals, but also about the inner details of the device operation. If the build-up factor is calculated for every 
node of the graph, it is even possible to generate a map of the irradiance of the light flowing throughout the 
entire circuit. This was made for the 10-ring CROW, with the aim of displaying the spatial power distribution 
of each of its resonances. A CROW with similar specifications to the one studied by Poon et. al. in [24] was 
considered (Figure 15(c)), with identical microrings of effective round-trip length of 𝑙𝑙 = 2π · (164.5 μm), 
effective index 𝑛𝑛eff = 1.4982, and very low losses given by α = 1 × 10−9 m−1. The coupling coefficients 
considered were 𝜅𝜅0 = 0.5 and 𝜅𝜅1 = 0.3, for the coupling with the waveguides and between rings, 
respectively. Typical transmission spectra were obtained for through and drop ports. They are presented 
in Figure 15(a) and Figure 15(b), and clearly show the band-pass filtering nature of the CROW and the 
appearance of ten supermodes associated to the spectrum local minima (or maxima). By comparing the two 
spectra, it is possible to identify their complementarity relation, derived from the interferometric origin of 
CROW’s frequency selectivity. The results for spatial power distribution study are presented in Figure 16: 
the aforementioned irradiance map was generated for each resonance wavelength (Figure 16(b-k)), and an 
arbitrary out-of-resonance wavelength (Figure 16(a)). The graphical representation of the device exhibits 
sharp points, as consequence of the discrete character of the graph used to support the model, but it clearly 
presents the information about the concentration or absence of optical power in every location of the circuit, 
as it is excited with radiation of different wavelengths. It is evident from Figure 16(a) that when the 
resonance condition is not fulfilled, light does not get confined in the system, and most of the power is 
preserved within the supply waveguide. In contrast, when a resonance is reached, the transmission through 
the supply waveguide is strongly attenuated, by means of the out-of-phase waves that return from the 
circuit, and the constructive interference that occurs inside of the CROW allows for the confinement of the 
light within the coupled cavities. Light can resonate forming different spatial configurations that 
characterize the resonant supermode. Figures 16(b-k) show that these distributions can be symmetrical or 
anti-symmetrical with respect to the central coupler of the CROW. It is also noticed that every CROW 
supermode shares the same spatial power distribution with the supermode that is equally shifted with 
respect to the original eigenwavelength of the individual microrings (i.e., midpoint of the spectral pattern). 
Color scales for all the irradiance maps have been normalized, so the maximum irradiance in each map gets 
assigned the maximum color level. Nevertheless, it is possible to verify that supermodes have a different 
power confinement performance by checking the numeric range indicated on the color scale. It appears that 
outermost (most red- and blue-shifted) supermodes have the greatest power confinement capacity, as they 
reach internal irradiance values almost seven times higher than those at the entry port. Besides, 
supermodes with the same spatial power distribution attain the same irradiance maxima. 

Additionally, it is worth to remark that the configurations of spatial power distributions follow a clear 
complexity pattern: simpler distributions correspond the outermost resonances, and the most complex 
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correspond to the inner ones. Here complexity is associated with the amount of independent local power 
maxima. Figure 17 makes this interesting feature more evident by presenting a saturated grayscale version 
of Figure 16. 

 
Fig. 15. CROW spectral study results. (a) Transmittance spectrum at through port. (b) Transmittance spectrum at drop port. Power 

transmission is normalized with respect to the input signal, arbitrary units (a.u.) used.  (c) Schematic of modelled circuit with 
parameters and ports labels indicated. Parameters values: 𝑙𝑙 = 2π · 164.5 μm,𝑛𝑛eff = 1.4982, α = 1 × 10−9 m−1, 𝜅𝜅0 = 0.5 and 𝜅𝜅1 = 0.3. 

 
Fig. 16. Electric field norm distribution (in V/m) for CROW operating at (a) out-of-resonance and (b-k) resonance wavelengths. Each 

resonance wavelength corresponds to a local minimum in through port transmission spectrum (Figure 15(a)). 

 
Fig. 17. Grayscale saturated version of Figure 16. Energetic maxima complexity distributions can be observed more clearly. Central 

supermodes have associated more complex energetic distributions than outermost supermodes. 
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Previous results have shown some of the different types of studies that the described model allows. These 
may serve as tools for conducting analyses of new integrated architectures, characterizing device proposals, 
or finding the parameters for optimal performance of certain structures. As evidence of the capacities of 
this modeling technique, two additional circuits with interesting phenomena were modelled, accurately 
reproducing the reported experimental results provided by Xu et. al. in [52] and Boeck et. al. in [53]. Figure 
18(a) shows the spectral transmission of a pair of parallel coupled microrings, whose parameters were 
adjusted, as indicated in [52] for exhibiting Coupled Resonators Induced Transparency (CRIT) effect. Figure 
18(b) presents the drop port transmission of a pair of asymmetrical serially coupled resonators, with 
effective round-trip lengths adjusted to enable the observation of Vernier effect [53]. These briefly 
discussed examples illustrate the design possibilities that the modeling methodology can allow. Their 
corresponding design parameters are summarized in Table 1.  

 

Fig. 18.(a) CRIT effect modeling. Transmittance spectrum at through port of an array of two parallel coupled microrings. Circuit 
schematic description and parameters labels displayed at inset. Power transmission is normalized with respect to the input signal, 
hence the use of arbitrary units (a.u.).  (b) Vernier effect modeling. Transmittance spectrum at drop port of an array of two serially 

coupled microrings. Circuit schematic description and parameters labels displayed at inset. 

 

TABLE 1. Design parameters for CRIT and Vernier circuits. 

CRIT circuit Vernier circuit 
Parameter Value Parameter Value 

𝑑𝑑 15.71 𝜇𝜇m 𝑙𝑙1 28.425 𝜇𝜇m 
𝑙𝑙1 2𝜋𝜋 ·5 𝜇𝜇m 𝑙𝑙2 42.637 𝜇𝜇m 
𝑙𝑙2 2𝜋𝜋 ·5.0014 𝜇𝜇m 𝑛𝑛eff 3.4 
𝑛𝑛eff 1.997 α1 69.08 m−1 
α1 100  m−1 α2 69.08 m−1 
α2 100  m−1 𝜅𝜅0 0.122 
𝜅𝜅0 0.35 𝜅𝜅1 0.007 

  
7. Conclusions 
A workflow for modeling resonant integrated photonic circuits comprising planar waveguides and 
evanescent couplers was presented, describing a semi-analytical approach for developing studies that 
integrate analytical models of numerically characterized building blocks, by leveraging circuits graph 
representations. Main theoretical details of basic photonic components descriptions were explained, and 
the matrix formulation for calculating circuit’s stationary behavior was derived. Resonant circuits examples 
were used as study cases throughout the tutorial for illustrating the realization of every modelling workflow 
step. 
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Results for several modeling studies were presented, highlighting different circuits properties that may be 
analyzed with the described modeling workflow. Most of presented results were validated with previously 
published results in academic literature. 

This tutorial is published along with the in-house python-based software developed for implementing the 
models. It can be obtained online as an open-access resource for the realization further studies. 
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