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ABSTRACT:

Current developments in integrated photonics require the design of new integrated structures and the
execution of multiple optimization cycles, for which accessible and flexible modeling techniques
represent essential tools. Commonly used in engineering for modeling complex systems, transfer
matrices are simple and powerful tools that may be implemented for the simulation of circuit- and
system-level photonic elements. In this tutorial, we present a detailed description of a modeling
methodology based on signal-flow graphs and transfer matrices that successfully predicts the spectral
behavior of resonant photonic circuits. Every stage of the modeling process is comprehensively
elaborated in the tutorial, with the aim that it serves as a starting guide for new researchers in the
field. Validation results are presented for demonstrating the accuracy of the model in reproducing
published benchmarks, and several studies are carried out to illustrate model’s scope. In addition to
the basic theoretical and practical considerations required for the construction of photonic circuit
models, an open-source Python-based software is provided, enabling the immediate implementation
of described techniques and their use as baseline for advanced studies and designs.

Key words: Photonic integrated circuit; spectral modeling; signal-flow graph; transfer matrix;
open-source software.

RESUMEN:

Los desarrollos actuales en fotdnica integrada requieren el disefio de nuevas estructuras integradas y
la ejecucion de multiples ciclos de optimizacion, para lo cual técnicas de modelamiento accesibles y
flexibles representan herramientas esenciales. ComuUnmente utilizadas en ingenieria para el
modelamiento de sistemas complejos, las matrices de transferencia son instrumentos simples y
poderosos que pueden implementarse en la simulaciéon de elementos foténicos a nivel de circuito y
sistema. En este tutorial presentamos una descripcién detallada de una metodologia de modelamiento
basada en grafos de flujo de sefial y matrices de transferencia que predice exitosamente el
comportamiento espectral de circuitos fotonicos resonantes. Cada etapa del proceso de modelamiento
se detalla exhaustivamente en el tutorial, con la intencién de que este sirva como guia introductoria
para nuevos investigadores en el area. Se presentan resultados de validacién demostrando la exactitud
del modelo para reproducir resultados publicados de referencia, y se realizan varios estudios
ilustrando el alcance del modelo. En adicién a las consideraciones basicas teoéricas y practicas
requeridas para la construcciéon de modelos de circuitos fotdnicos, se provee un software de acceso
abierto basado en Python, permitiendo la implementacién inmediata de las técnicas descritas y su uso
como punto de partida para estudios y disefios avanzados.

Palabras clave: Circuito fotonico integrado; modelamiento espectral; grafo de flujo de sefial; matriz
de transferencia; software de acceso abierto.
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1. Introduction

Integrated photonics is a flourishing industry and research field that harness modern optoelectronics
maturity, forefront techniques in nanotechnology, and installed microelectronics infrastructure, to transfer
the extensive available knowledge in photonic science to the development of devices and systems that fully
operate on photonic integrated chips [1, 2]. The growing availability of these integrated platforms has
enabled the extension of photonic technology capacities and the consequent amplification of their impact,
since they provide an ideal setting for the construction of applications with high hardware density demands,
strict control of external conditions and strong reliance on light-matter interaction; also streamlining the
conversion of prototypes into commercial products, by scaling up the fabrication reproducibility and
reducing the costs per device [3, 4]. Many integrated photonic technologies are already serving society, in
different areas, such as data communication [5, 6], medical monitoring and diagnosis [7-9], or augmented
reality [10], and new promising application fields are under active development [11-14].

However, in order to meet the expectations posed on next generations of integrated devices, overcoming
several technical barriers is essential. For instance, constraints derived from the strong reliance of circuit
performance on small fabrication errors need to be relaxed, the compatibility of different material platforms
and the possibility of transitioning towards different frequency bands need to be enabled, and novel devices
meeting the exigent demands of the ongoing quantum revolution need to be developed. These open
challenges raise interests on the generation of integrated solutions in both the device and circuit levels, and
require the conception, design and optimization of new structures and architectures. For contributing to
this process, simulation and modeling tools are required for the assessment and tuning of proposed
solutions performance [15], which motivates the presentation of this tutorial that aims to provide technical
orientation and an open-source design tool that could facilitate further studies on these systems. The model
employed in this tutorial is derived from a semi-analytical approach and takes advantage of a signal-flow
graph-assisted technique, which simplifies the systematic integration of independent transfer matrix-based
descriptions of multiple individual components. The tutorial is intended to serve as baseline for researchers
starting projects in the field, as it details the theoretical framework and practical strategies upon which the
proposed design workflow is supported, provides access to the photonic design software used for the
generation of presented results, and suggests an extensive set of literature resources for further reference.
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Among the wide set of components used in the composition of photonic integrated circuits (PIC) [16, 17],
photonic resonators are traditional devices, pervasively used in the design of conventional and new
solutions due to their high sensitivity and capacities for power concentration, spectral filtering and signal
processing [18, 19]. Their versatility and areas of application have been broadened by means of the
composition of resonant structures comprising multiple coupled resonators (i.e., photonic molecules) [20-
22]. Current interest in the study and exploitation of this kind of circuits has been taken into consideration,
hence the focus on resonant structures of this work.

Recent progress in nanophotonics has extended the variety of integrated resonators that may serve as
specialized cavities, intended for specific advanced tasks. The consideration of these sophisticated
structures is possible under the scope of this work if their optical behavior is accurately described by
transfer matrices [23]. Nevertheless, our approach is primarily dedicated to complex resonant systems
made up of conventional integrated structures, supplied by most of PIC foundries and whose fabrication is
already refined. Three of these systems are shown in Figure 1 and will be presented as study cases
throughout the tutorial. Figure 1(a) illustrates a coupled-resonator optical waveguide (CROW), which
consists of a set of serially coupled microring resonators, that is waveguide-coupled at both ends. This
system has several output ports. In this work we will analyze the signal obtained at the end of the power
supply waveguide, commonly known as through port, and the one obtained at the opposite-side
waveguide’s facet that receives most of the decoupled power, known as drop port. Figure 1(b) presents a
cascaded Sagnac loop reflectors (CSLR) resonator. It is made up of a series of reflectors like the one
presented in Figure 2(a), whose mirror character is provided by the evanescent coupler at the bottom of
the loop. Figure 1(c) illustrates an array of coupled microring resonators in a flower-like configuration in
which there is effective coupling between all adjacent resonators. This flower-like system is laterally
waveguide-coupled for power supply and signal probing. CROW and CSLR study cases take the studies
conducted by Poon et. al. [24] and Wu et. al. [25] as benchmarks for model validation purposes. Thereby,
circuits parameters have been set accordingly.
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Fig. 1. Examples of photonic integrated circuits, used as study cases throughout this tutorial. (a) Coupled-resonator optical
waveguide. (b) Cascaded Sagnac loop reflectors resonator. (c) Flower-like photonic molecule.

These study cases are taken as common thread for presenting a complete modeling workflow, going from
the basic theoretical considerations to the use of an in-house software for the realization of different
spectral analyses. In this way, Section 2 presents the analytical descriptions of basic photonic components
that are used later to build more complex systems; Section 3 describes a numerical methodology for
obtaining the parameters that characterize each basic component; Section 4 introduces the concept of
signal-flow graph as an ancillary structure to systematize the analysis of arbitrary designs and its use for
computing photonic circuit’s stationary state; Section 5 provides the instructions for getting access to the
open software published along with this work; and Section 6 discusses the obtained results on the spectral
behavior of studied systems, providing a general outlook of the scope of the model. Conclusions are included
at the end, summarizing the highlights of the tutorial.

2. Building blocks models

This tutorial concentrates on resonant circuits comprising rectangular waveguides and evanescent
couplers; thereby, their operation can be easily decomposed in the contributions of these basic components,
as suggested by the diagram presented in Figure 2. Theoretical models are presented below for these
components, which are used in section 4 as building blocks for the construction of entire circuits
descriptions.
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Fig. 2. (a) Integrated Sagnac loop reflector. (b) Integrated Sagnac loop reflector schematically broken down into its basic

components: waveguides and couplers.

For the sake of clarity and general practicality, several assumptions are made to simplify the presentation
of the main concepts, while focusing on the operation conditions more commonly preferred. In this way,
linear, passive, single-mode and stationary operation is assumed for all the waveguides. In addition,
materials are considered to have low dispersion and frequency-independent losses, which may be directly
assumed in narrowband studies. These conditions may appear to be very restrictive, but the operating
regimes of many integrated photonic technologies comply with them. In any case, the model can be
upgraded while preserving the same approach for taking into account the coupling of the fundamental mode
with high-order modes, or by introducing the information of frequency-dependent material properties.
Thus, this tutorial may serve as basis for the further development of more sophisticated models, tailored
according to research or technology needs.

2.a. Waveguides.

Integrated waveguides are planar photonic structures, whose dielectric profile allows the confinement of
light via total internal reflection, and rectangular waveguides are the most common choice for photonic
integrated circuits (Figure 3). To have an accurate description of their contribution to the integrated circuit
behavior it is relevant to study the phase-shift and power attenuation rates that guided light experiences.

= u'w B

@ () © A

Fig. 3. Planar waveguides examples. (a) Strip waveguide. (b) Buried strip waveguide. (c) Rib waveguide. (d) Slot waveguide.

According to their properties, waveguides only provide effective guiding to a specific set of supported
modes, associated with geometric configurations of the electromagnetic field that ensure the replication of
the wave as it propagates (i.e., self-consistency condition), imposing fixed relations between spatial and
temporal periodicity of the radiation (i.e., dispersion relations). Waveguide propagation modes thus appear
as eigenvectors of the eigenvalue problem that arises from the establishment of the continuity relations and
the dielectric profile of the guiding structure in the application of Maxwell’s equations for solutions that
preserve their transversal configuration [26]. For lossless straight waveguides, these solutions have the
following form for the transversal field:

Er(x,v,2,t) = Ep(x,y)e B2ei®t = A(z) é,(x,y) ei®t, (1

where A(z), B and w are the complex amplitude of the propagating mode, its propagation constant, and light
signal frequency, respectively. €;(x, y) is the normalized vector function that stores the information about
mode’s characteristic polarization distribution.

With ET (x,y) = ExX + E, 9, the quasi-TE and quasi-TM modes of the eigenvalue problem can be formulated
as follows [27]:
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where k, = 21/A, represents the wavenumber, A, is the vacuum wavelength, and n(x, y) corresponds to
the refractive index profile. It is clear that w and 8 are characteristic quantities that inform about the
temporal and spatial phase-shift rate of the mode. Therefore, their ratio stores the information about the
effective phase velocity at which modal wavefronts propagate. Then, it is natural that the effective index of
the mode is defined as

n :=L=£
T W/B) ko

being v, = w/B the modal phase velocity. For certain propagation length L, the evolution of the phase of the
guided mode can be calculated as

(4)

Ap = BL = neg koL (5)

Both  and n.g can be used to unambiguously identify certain mode, and their relationship with frequency
(i.e., dispersion) may be engineered by adjusting waveguide materials properties or geometry [28].

In relation to power attenuation, modes may lose their carried energy via different mechanisms. Thus,
losses can have absorptive, scattering, and radiative nature. Linear absorption is associated with the
ordinary interaction of light with the material and will be as low as material transparency allows within the
operation frequency band. Scattering losses are provoked by fabrication defects, namely, impurities or
surface roughness; thereby, their intervention in device operation is modelled stochastically. Radiative
losses are associated with light decoupling from the guiding structure as a consequence of disturbances in
the confining dielectric profile, such as bends or the presence of new structures near to the waveguide core.
The contributions of these loss mechanisms to power decay can be included into a single attenuation
coefficient a as [29]

A = Qgps T Oscqr T Oraq - (6)

As aresult, the evolution of the complex amplitude associated to an attenuated single-mode propagation in
a waveguide is described by

A(L) — AO eiA(p e—aL — AO ei(B+ioc)L — AO eiEL , (7)

which entails a Beer-Lambert power decay and a harmonic phase progression. To obtain a more condensed
formulation of the modal propagation description, a generalized complex propagation constant is
commonly defined as = B + ia, whose real and imaginary parts account for the mode phase evolution and
amplitude attenuation rates, respectively.

If waveguides are bent, they keep the capacity of guiding their eigenmodes, whose wavefronts rotate as they
propagate so that the traveling direction remains parallel to the walls of the waveguide. It is worth to
remark that the perturbation introduced by the bend alters the effective index and confinement capacity of
the structure, implying that the modes of bent waveguides have an intrinsic lossy character [27, 30]. In
consequence, radii of curvature should be designed large enough to avoid significant deviations of the
effective index and loss rate of the straight counterpart. Considering that this condition needs to be fulfilled
in the design processes covered by this tutorial, the mismatch between straight and bent waveguides
effective indices will be disregarded, and if the radiative losses associated to the bends are significant, they
may be included into the waveguide attenuation coefficient (equation 6).
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2.b. Couplers.

Integrated couplers are used for transferring power from one waveguide to another. This is usually
performed by approaching a waveguide to the vicinity to the other, so that the evanescent fields of the
propagation mode supported by the waveguide can reach the core of the neighbor waveguide and serve as
a channel that supplies optical power [31], in analogy with tunnelling effects between quantum wells. The
electromagnetic details of the interplay between coupled waveguide modes can be described from several
approaches, such as Coupled Mode Theory [32] and Eigenmode Expansion Methods [33]. However, even if
the coupler was analytically, numerically or experimentally characterized, the information of its operation
can be encoded in transfer matrices [34]. In this approach, incoming and outgoing waveguides are treated
as input and output ports of a linear system and get related by scalar values stored in the transfer matrix
(T-matrix) associated to the coupler. Complex amplitudes of signals at each port of a coupler, as the one
shown in Figure 4, are thus related by the T-matrix presented in equation (8).

alout _ [alin] — T4 T12] [alin] (8)
azout A2, T21 TZZ 21"

T-matrix elements are not independent, but the relationships they hold are determined by the requirements
of energy conservation and reciprocity, whose implications are briefly elaborated below.

Tl?’ TZI
e
a2’LTl; P //TQQ 4 a2out
\// >

Fig. 4. 2x2 evanescent coupler. Depicted arrows and transfer factors indicate the relations between the complex amplitudes of
output and input signals.

If the coupler is assumed to be lossless, power balance provides the first relation between coupled modes
amplitudes:

Zj:l,Z Jin Z] 12 Jout' (9)

2 2 2 2
|a1in| +|a2in| =|a10ut| +|a20ut| ' (10)

Reciprocity implies that if output fields were time-reversed, light would be assembled back into original
(reversed) input fields. This is possible if T is invertible, so that

| _ ot [Foue] 1 Ty, —Ty, 1out
[azin] B T Iiazout:| B det(T) _T21 Tll ] [azout ’ (TllTZZ B T12T21) * 0 ' (11)

Ifa,, and a, . are replaced in (10) by using the relation with a,, and a,, given by (8), and a,, and a,,
are replaced in (10) by using the relation with a,_ and a,  , given by (11), the following constraints are
found

IT111? = [To2 % |Tiz|? = [T l?; (12)
b11+ bz = 25 gy + Gy + 1= 2qT (13)
T11Ty; — TioTor = 15 (14)
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where p and q are integers, and ¢, = Arg{Tji}. A similar derivation is presented in the appendix of
reference [31].

These conditions that T-matrix entries have to fulfill are summarized in the T-matrix formulation [35]

t K

_ 2 2 _
T=[_". Ll 1P+ =1 treo). (15)
As explained in [36], a simplified form of equation (15) can be obtained from the assumption that the phase
induced by the coupling is symmetrical between waveguides, so that T-matrix can be presented as

_ t iK 2 2 _
T=[' ‘] e+1¥=1 (treRe. (16)

Since coupler transmission and coupling coefficients, t and x, are bound, determining one of these will
provide enough information for characterizing the lossless coupling between identical waveguides. This is
the type of coupler that will be assumed in next studies, and a recurrent approximation in integrated circuits
modeling.

3. Determination of parameters

The models presented in section 2 establish how the design parameters of modelled devices (i.e., a, § and
k) affect their optical behaviour. However, to fabricate a device according to certain design, or to predict
the response of an already fabricated device, it is important to connect design parameters with fabrication
specifications. To obtain this connection, several strategies can be employed, whose validity depends on the
applicability of their assumptions in the context of the studied system.

Multiple analytical approaches have been devised for estimating the dispersion relations of waveguides
[26], curvature-induced radiative losses in bends [30], and the coupling coefficients in directional or
adiabatic couplers [37]. These approaches make it possible to have a fully analytical solution of the global
system, with which the influence of every fabrication parameter can be clearly traced back. However, they
usually imply approximations that are held for quite specific configurations, so it is unpractical to rely on
these models only.

Other possibility for characterizing the devices is to perform direct experimental measurements that may
allow for the parameter extraction [34, 38], certainly the most adequate option for modeling reproducible
devices, such as those fabricated in production lines with standardized manufacturing processes.
Nevertheless, the execution of these experiments for research purposes entails high costs, is time-
consuming and depends on the technological availability of the structures being modelled.

Another alternative for characterizing the building blocks for the circuit design process is to calculate the
parameters by running electromagnetic simulations for the devices under consideration. As example of the
information that may be obtained following this strategy, the results of several Finite Element Method
(FEM) simulations in the frequency domain are presented below.

Figure 5 shows the results of computing the fundamental quasi-TE mode of a rectangular 450 nm X 220 nm
waveguide, with material properties set for silicon-on-insulator (SOI) platform. Figure 5(a) plots the mode
effective index against wavelength, and Figure 5(b) illustrates the distribution of the electric field norm of
the fundamental mode. A unitary vector field has been superimposed, with the aim of indicating the
transverse polarization distribution as well.

Figure 6 presents another numerical study that was performed for obtaining the order of magnitude of the
losses introduced by circular bends of different radii. Several bends were arranged serially, and the power
output was calculated after stationary propagation throughout 20 bends of 90 degrees, keeping a fixed
wavelength value of Ao=1.55 pm. This allowed to estimate the loss associated to every 90°-turn. From Figure
6(a) it is possible to infer that the losses increase exponentially as the radius of curvature is reduced. Figure
6(b) shows the electric field norm distribution, and it is evident that for the smaller radius case the losses
are more notorious (the same color scale was used for both visualizations).
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For coupling coefficient estimation, a pair of circularly bent waveguides were simulated as they were
located at different relative distances. As expected, as the gap increases the coupling ratio attained decays
exponentially. Another relevant variable to take into consideration is the radius of coupled bends, since
larger radii allow the interaction of the two modes to be effective along longer distances. Figure 7(a)
presents the results of power transmission obtained at the output port, indicating the amount of power that
was decoupled from the supply waveguide. The relationships of coupling efficiency with gap and curvature
radius are evident. Figure 7(b) shows the electric field norm distribution for couplers with different gaps,

preserving a radius of 10 ym.

Electric field norm distributions (Fig. 5-7) remain valid for any input power. Thus, color scales are arbitrary.
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Fig. 5. FEM simulation results for the transverse field of the quasi-TE mode of a rectangular SOI strip buried waveguide. (a) Effective
index dependence on mode’s frequency (vacuum wavelength). (b) Electric field norm and transverse polarization distributions.
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Fig. 6. FEM simulation results for losses in SOl meandering waveguides (Ao=1.55 um). (a) Bend losses (dB/turn) dependence on bend
curvature. (b) Electric field norm distribution of light propagating throughout meandering waveguides with 2.51 pm radius of
curvature (upper) and 4.02 um radius of curvature (lower).
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Fig. 7. FEM simulation results for coupling efficiency of a coupler comprising two coupled waveguide bends with identical radius of
curvature (Ao=1.55 um). (a) Dependence of the decoupled power on separation gap and radius of curvature. Power transmission is
normalized with respect to the input signal, hence the use of arbitrary units (a.u.). (b) Electric field norm distribution of light at
coupler with 10 pm radius of curvature and separation gap of 459 nm, 377 nm, 173 nm and 50 nm (from upper left to lower right).
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4. Signal-flow graphs and adjacency matrices

Having established the models accounting for individual components, the global operation of the circuit (i.e.,
the global transfer function) can be obtained by linking all the local transfer conditions, which are provided
by the transfer equations of all the building blocks that the circuit comprises. If all conditions are
simultaneously imposed in an extended equation system, its solution would represent the complex
amplitudes of the signal flowing within the photonic circuit at stationary regime. Instead of proceeding with
a direct algebraic procedure, it is convenient to define a graph-based general workflow, aiming at
developing a systematic protocol for the analysis of circuits with arbitrary design, suited for developing a
software design tool. Besides, the use of graph structures for encoding photonic circuit properties paves the
way for further model upgrades that may exploit graph theory concepts and algorithms.

Signal-flow graphs are graphical representations of systems, especially suitable for signal evolution studies.
Commonly used for solving electrical, control and automation engineering problems, they have also been
applied in the modeling of photonic circuits and systems [39, 40], as they offer a useful scalar way of tracking
optical signal amplitude and phase. Signal-flow graphs represent modelled devices by decomposing them
into discrete evaluation points, represented as graph vertices, or nodes, at which the signal is locally
evaluated. The nodes are chosen in a way such that the signal transfer relations between nodes are
independent, so that the transferred signal from a node to another relies only on signal’s evaluation at the
starting node. All nodes sharing an allowed signal-flow path, are connected by directed edges, or branches,
whose associated complex-valued weight and orientation determine the signal transfer relation and flow
direction respectively [41, 42]. Transfer relations are in general complex-valued functions and may be
parametrized by device design specifications. Transfer functions between two nodes, referred below as
local transfer functions, are defined as the quotient of the complex amplitudes of the optical signal evaluated
in such nodes. For our purposes, waveguides and couplers ports will be used as evaluation nodes.

The translation of the photonic basic elements within the graph-based framework is illustrated in Figure 8.
Single-mode waveguides may be represented by single directed edges, as shown in Figure 8(a), having
associated a weight accounting for the corresponding phase and amplitude evolution coefficients, given by
(5), (6) and (7). Figure 8(b) shows the graph representation for couplers, similar to the one presented in
section 2.b (see Figure 4). Additional structures are displayed in Figure 8(c), namely, a three-waveguide
coupler and an integrated distributed Bragg reflector (DBR). These are common components in integrated
photonic circuits, and they may be characterized with a T-matrix, as demonstrated in [43] and [44]. Thus,
they may be incorporated in signal-flow graph models as well, but their study is out of the scope of this
work.

(a) (b) ()

| p(-aHpL , > ——©

/
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Fig. 8. Basic photonic components and equivalent graph elements. (a) Single-mode waveguides are modelled by single directed
edges. (b) Unidirectional couplers are modelled as symmetric crossbar-like arrangement of directed edges. (c) Examples of other
signal-flow graph-compatible photonic components, not included in the analysis carried out in this tutorial.

The integration of previous basic graph elements allows the composition of much more complex structures,
such as the resonators under analysis. In this way, the signal-flow graph for the Sagnac reflector, presented
and conceptually fragmented in Figure 2, is obtained by representing its basic photonic components with
their corresponding graph-equivalent elements, as shown in Figure 9. This chart shows that when
counterpropagating modes are allowed by the system, the ports of the basic photonic components have
associated a duplicate number of nodes, so that counterpropagating signal-flows get represented by
different branches, connecting different nodes.
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Fig. 9. Signal-flow graph representation of a Sagnac loop reflector. It is necessary to duplicate vertices for ports allowing
counterpropagating signals, so that their information gets stored in independent graph branches.

Following this procedure, the signal-flow graphs for the photonic circuits under consideration (Figure 1)
are illustrated in Figure 10. Every edge of these graphs has an associated weight determined by the design
parameters of the circuit, which are in principle independent. With the purpose of alleviating the
visualization, bidirectional edges are used to denote counterpropagation segments (Figures 10(b) and
10(c)), keeping in mind that formal calculations require the unfolded format already described (Figure 9),
and node numbering has been omitted. It is worth to remark that the use of graphs with antiparallel directed
edges connecting the same pair of nodes is not a suitable modeling alternative for counterpropagating flows,
since doing so leads to unphysical light reversal events [45].
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Fig. 10. Signal-flow graph representations of circuits modelled in the tutorial. (a) CROW graph. (b) CSLR resonator graph. (c) Flower-
like photonic molecule graph. Bidirectional edges imply a duplicate number of nodes and edges.

Having defined the graph representing the circuit under study, and the design parameters that characterize
the operation of its constitutive components, its global spectral behavior can be obtained by solving the
stationary condition for the system, using the adjacency matrix A associated with the graph [46]. This is a
mathematical resource used to encode connectivity information of a graph in a square matrix format. It has
as many rows and columns as nodes appearing in the graph. According to the numbering convention of the
nodes, the nt" row and column of the matrix are associated with the nth node of the graph, and its (j k)-entry
Ajy corresponds to the complex-valued local transfer function associated with the directed edge starting at
the jt node and ending at the kth node. If there is no edge connecting a pair of nodes, the corresponding
entry takes a null value. As illustration, the adjacency matrix associated to the graph shown in Figure 9 is
presented in Figure 11.
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Fig. 11. Adjacency matrix associated to Sagnac loop reflector graph presented in Figure 9.

Thus, the stationary condition fulfilled by the system, after reaching the steady state, can be formulated as
d=dy+ATd, a7

where d and d, are column vectors, such that the a; component is the stationary signal amplitude evaluated
at the j*h node, and the ao; component is the amplitude associated with constant external excitation at the
jth node. Equation (17) implies that the superposition of external constant excitation and the image of the
state vector under the AT transformation (transfer relations) yields the same state vector, hence the
stationarity. Taking the transpose of the adjacency matrix is necessary for preserving the conventional
notations for adjacency matrices and vector equations.

Solving for the stationary signal amplitude vector d, one obtains

(I—A") d = dy; (18)
d={—-AD"1d,; (19)
a=(1-A)""d,. (20)

In this way, the (j,k)-entry of T, = ((I — A)~1)T stores the global transfer relation from the kth node to the
j node. So, T, can be considered a global transfer matrix for the entire circuit.

If a frequency (wavelength) sweep is performed by updating the entries of A, computing @ as w (},) is
varied, the spectral behavior of the system is obtained. Since d not only contains information about the
output node, but about every node in the defined graph, it is possible to generate the energetic and phase
distributions of the signal within the entire circuit for every computed w (4,).

5. Open software

The models detailed in sections 2-4 were employed for developing Molecule Designer: A Python-based
software that allows to directly calculate the transmittance spectrum and frequency-dependent phase-shift
of a photonic circuit. It also allows to generate visualizations of the energetic and phase distributions of light
circulating at stationary state within the circuit for any required frequency or wavelength.

Users provide the design specifications of the circuit under study by entering the associated adjacency
matrix in a symbolic format (i.e., with every parameter symbolized by a label), so that sweeps can be easily
performed in the design space. For the generation of distribution graphics, it is necessary to provide
information on the relative positions of graph nodes. It can be made just by providing an image of the graph,
and the software will present it in a graphic interface on which users can directly click on the image
locations that will be saved as nodes coordinates. Plots generated by Molecule Designer can be interactively
displayed or stored in text and image formats. Graphics of distributions can be temporally displayed or
stored in PDF files.
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The software allows to specify the spectral band for the study and tune the sampling. It allows to select
between frequency or wavelength formats for results generation as well. In addition, it is possible to adjust
several settings regarding plots and graphics presentation and styles. The general appearance of Molecule
Designer, being executed in Spyder (Scientific Python Development Environment), is illustrated in Figure
12.

Molecule Designer was built to be compatible with drag-and-drop circuit design environments. A similar
open-source design tool that allows to programmatically generate circuits designs has been developed by
Ploeg et. al. [47].

Molecule Designer is an open-source code, that may be accessed in Zenodo and GitHub repositories [48, 49].
Moreover, GitHub repository includes basic instructions for the execution and use of the program.
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0= 0n0
pme *NOMQ

05

535D 2 Do
ol

9
-

MOLECULE DESIGNER
Photonic circuit sinulator

T e et
Ty e

©2021 3
Universidad Nacior

¢ Arango
1

Fython .
5P Python:ready  © conda: base (Pyhon 3.8.) e 15, ol 1 T8 CRU

Fig. 12. General outlook of Molecule Designer running on Spyder. Settings panel, graphical coordinate selection window and
command line interface are displayed.

6. Results

The application of the described semi-analytical modeling approach enables the execution of multiple
studies. Some of them were performed to analyze the spectral response of the photonic devices used as
study cases, and the obtained results are discussed below as illustration of the scope of this model. All
analyses were obtained with the assistance of the developed software Molecule Designer.

Transfer matrix-based models are well suited for efficiently predicting the effect that variations of some
design parameters would have on the performance of the device. This is demonstrated by calculating the
spectral transmission and reflection of the cascaded Sagnac loop reflectors resonator and carrying out
several parameters sweeps, hence, checking its reliance on coupling coefficients, loss rate, and effective
index. It was modelled with fixed geometric parameters and constant coupling coefficient for the central
coupler. In this way, the separation between loops and loops’ lengths were d = 100 um and ! = 129.66 pm,
respectively (Figure 13(e)). The central coupler transmission coefficient was maintained as t,=0.97 for all
the sweeps. As expected, the spectra in Figure 13 share the characteristic functional form that results from
the mode splitting (i.e., modal hybridization) that occurs for pairs of coupled cavities (dimers) [50]. Figure
13(a) presents the transmission curves predicted for different waveguide effective indices, while keeping
losses and coupling ratios constant, with a = 55 m™* (0.239 dB/mm) and t; = t, = t3=0.97. It is observed
that the variation of the effective optical path length of the cavity produced by the effective index sweep
shifts the wavelengths at which the resonance condition is fulfilled. In Figure 13(b), the result of varying the
attenuation is shown, as a was swept from 500 m~* to 1300 m~? (2.171 dB/mm 5.646 dB/mm). In this case,
a constant value for the effective index of n.s = 2.5802 was held, and couplers configuration was t; = t, =
t3=0.97.1tis clear from the curves set that both the transmission and peak-valley contrast increase as lower
losses are considered. Figures 13(c-d) present the transmission and reflection of the system for different
couplers configurations, as the equated transmission coefficients of the outermost reflectors t; and t; are
swept from 0.75 to 0.99, while keeping t,=0.97. It is noticeable that by changing the coupling strength, the
magnitude of the mode splitting (separation of the peaks) is affected, which is a typical feature of circuits
with coupled cavities. Results presented in Figure 13(c) match with those reported by Wu et. al. in [25], in
which a cascaded Sagnac loop reflectors resonator with the same characteristics is studied, thus serving as
validation of the method described in this tutorial.
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Fig. 13. Transmission and reflection spectra computed for the CSLR resonator for different parameter sweeps. (a) Effective index
sweep, keeping a = 55 m~1 and t; = t, = t3=0.97 fixed. (b) Attenuation coefficient sweep, keeping n.s = 2.5802and t; = t, =
t5=0.97 fixed. (c) Outermost couplers efficiency sweep (transmission), keeping a = 55 m™1, n = 2.5802 and t, =0.97 fixed.

(d) Outermost couplers efficiency sweep (reflection) , keeping a = 55 m™*, n = 2.5802 and t, =0.97 fixed. (e) Schematic
representation of modelled circuit with parameters labels indicated. Separation length between reflectors and their circulation
lengths are d = 100 pm and [l = 129.66 um, respectively.

For computing the spectra of the signal at different ports, as made for the reflection calculation in Figure
13(d), it is necessary to consider different nodes of the corresponding graph. Under the followed modeling
approach, this just implies an alternation of the considered entry from the computed matrix. This property
of the models based on signal-flow graphs can be exploited for evaluating field’s power build-up factors in
internal sectors of the circuit, for which the optical signal amplitude and phase can be calculated as functions
of wavelength. This study was made for the 7-ring flower-like photonic molecule (Figure 1(c)), obtaining
the results presented in Figure 14. By selecting different nodes of the graph, through-port transmission, and
power build-up factors for clockwise and counter-clockwise propagations in the central microring were
calculated. In addition, the phase state of the mode at each evaluation node was also obtained, using as
reference the phase state at the entry of the circuit. All resonators were assumed to be identical, with round-
trip length [ = 21 - (15 um), effective index n.g = 2.8 and loss rate given by a = 500 m~! (2.171 dB/mm).
The flower-like photonic molecule is waveguide-coupled, with a coupling ratio given by x, = 0.5, and all the
couplers between microrings are designed to have equal ratio, with x; = 0.45. Figure 14(d) details the
location at which the field is analyzed. The spectra in Figure 14 span over a wavelength range that
corresponds to one period of the flower-like circuit spectrum, and three periods of the spectra associated
to the individual microrings. It is interesting to notice that in contrast with the spectra associated with the
topologies of other systems of identical coupled resonators [51], instead of appearing always the same set
of supermodes in the vicinity of each individual resonator eigenwavelength, the mode can split in different
sets of supermodes, which implies that by coupling microrings in this configuration, the spectrum changes
its period. This suggests that this specific topology enables certain types of propagation loops or virtual
cavities, with effective round-trip lengths that are not multiples of the individual microring round-trip
length. Thus, these circuits would have associated resonance modes with out-of-the-grid periodicities
participating in the modal hybridization that produces these spectra. In addition, it is observed from Figure
14(b-c) that the excited supermodes have different power build-up factors for clockwise (CW) and counter-
clockwise (CCW) propagation for the same location in the circuit. CW signal builds up more power than the
CCW one in most of the cases, but certain supermodes circulate throughout the central microring with most
of their power going in the CCW direction. For those supermodes with comparable contribution of both CW
and CCW propagation, standing waves are expected to appear in the analyzed microring.
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Fig. 14. Stationary light signal spectrally probed at different locations of the flower-like photonic molecule comprising seven identical
microrings with round-trip length [ = 2 - (15 pm), effective index n s = 2.8 and loss rate given by a = 500 m~!. Waveguide-ring
and ring-ring coupling efficiency is given by k, = 0.50 and x; = 0.45, respectively. (a) Transmittance and phase-shift of the signal at
output port, normalized with respect to the input signal. (b) Buildup factor and phase-shift attained by counter-clockwise
propagation in the central microring, normalized with respect to the input signal. (c) Buildup factor and phase-shift attained by
clockwise propagation in the central microring, normalized with respect to the input signal. (d) Schematic representation of
modelled circuit with parameters labels and signal probe locations indicated.
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It has been demonstrated that the methods described can provide information not just about the outgoing
signals, but also about the inner details of the device operation. If the build-up factor is calculated for every
node of the graph, it is even possible to generate a map of the irradiance of the light flowing throughout the
entire circuit. This was made for the 10-ring CROW, with the aim of displaying the spatial power distribution
of each of its resonances. A CROW with similar specifications to the one studied by Poon et. al. in [24] was
considered (Figure 15(c)), with identical microrings of effective round-trip length of [ = 2m - (164.5 um),
effective index n.g = 1.4982, and very low losses given by a = 1 x 1072 m~L. The coupling coefficients
considered were k, = 0.5 and x; = 0.3, for the coupling with the waveguides and between rings,
respectively. Typical transmission spectra were obtained for through and drop ports. They are presented
in Figure 15(a) and Figure 15(b), and clearly show the band-pass filtering nature of the CROW and the
appearance of ten supermodes associated to the spectrum local minima (or maxima). By comparing the two
spectra, it is possible to identify their complementarity relation, derived from the interferometric origin of
CROW’s frequency selectivity. The results for spatial power distribution study are presented in Figure 16:
the aforementioned irradiance map was generated for each resonance wavelength (Figure 16(b-k)), and an
arbitrary out-of-resonance wavelength (Figure 16(a)). The graphical representation of the device exhibits
sharp points, as consequence of the discrete character of the graph used to support the model, but it clearly
presents the information about the concentration or absence of optical power in every location of the circuit,
as it is excited with radiation of different wavelengths. It is evident from Figure 16(a) that when the
resonance condition is not fulfilled, light does not get confined in the system, and most of the power is
preserved within the supply waveguide. In contrast, when a resonance is reached, the transmission through
the supply waveguide is strongly attenuated, by means of the out-of-phase waves that return from the
circuit, and the constructive interference that occurs inside of the CROW allows for the confinement of the
light within the coupled cavities. Light can resonate forming different spatial configurations that
characterize the resonant supermode. Figures 16(b-k) show that these distributions can be symmetrical or
anti-symmetrical with respect to the central coupler of the CROW. It is also noticed that every CROW
supermode shares the same spatial power distribution with the supermode that is equally shifted with
respect to the original eigenwavelength of the individual microrings (i.e., midpoint of the spectral pattern).
Color scales for all the irradiance maps have been normalized, so the maximum irradiance in each map gets
assigned the maximum color level. Nevertheless, it is possible to verify that supermodes have a different
power confinement performance by checking the numeric range indicated on the color scale. [t appears that
outermost (most red- and blue-shifted) supermodes have the greatest power confinement capacity, as they
reach internal irradiance values almost seven times higher than those at the entry port. Besides,
supermodes with the same spatial power distribution attain the same irradiance maxima.

Additionally, it is worth to remark that the configurations of spatial power distributions follow a clear
complexity pattern: simpler distributions correspond the outermost resonances, and the most complex
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correspond to the inner ones. Here complexity is associated with the amount of independent local power
maxima. Figure 17 makes this interesting feature more evident by presenting a saturated grayscale version
of Figure 16.
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Fig. 15. CROW spectral study results. (a) Transmittance spectrum at through port. (b) Transmittance spectrum at drop port. Power
transmission is normalized with respect to the input signal, arbitrary units (a.u.) used. (c) Schematic of modelled circuit with
parameters and ports labels indicated. Parameters values: | = 21 - 164.5 um, n¢ = 1.4982,a =1 X 1072 m™?, k, = 0.5 and x; = 0.3.
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Previous results have shown some of the different types of studies that the described model allows. These
may serve as tools for conducting analyses of new integrated architectures, characterizing device proposals,
or finding the parameters for optimal performance of certain structures. As evidence of the capacities of
this modeling technique, two additional circuits with interesting phenomena were modelled, accurately
reproducing the reported experimental results provided by Xu et. al. in [52] and Boeck et. al. in [53]. Figure
18(a) shows the spectral transmission of a pair of parallel coupled microrings, whose parameters were
adjusted, as indicated in [52] for exhibiting Coupled Resonators Induced Transparency (CRIT) effect. Figure
18(b) presents the drop port transmission of a pair of asymmetrical serially coupled resonators, with
effective round-trip lengths adjusted to enable the observation of Vernier effect [53]. These briefly
discussed examples illustrate the design possibilities that the modeling methodology can allow. Their
corresponding design parameters are summarized in Table 1.
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Fig. 18.(a) CRIT effect modeling. Transmittance spectrum at through port of an array of two parallel coupled microrings. Circuit
schematic description and parameters labels displayed at inset. Power transmission is normalized with respect to the input signal,
hence the use of arbitrary units (a.u.). (b) Vernier effect modeling. Transmittance spectrum at drop port of an array of two serially

coupled microrings. Circuit schematic description and parameters labels displayed at inset.

TABLE 1. Design parameters for CRIT and Vernier circuits.

CRIT circuit Vernier circuit
Parameter Value Parameter Value
d 15.71 um I, 28.425 um
L 21 -5 um L 42.637 um
L, 2w -5.0014 um Nesf 3.4
Negr 1.997 oy 69.08 m™!
0oy 100 m™? a, 69.08 m™!
oy 100 m™? Ko 0.122
Ko 0.35 K, 0.007

7. Conclusions

A workflow for modeling resonant integrated photonic circuits comprising planar waveguides and
evanescent couplers was presented, describing a semi-analytical approach for developing studies that
integrate analytical models of numerically characterized building blocks, by leveraging circuits graph
representations. Main theoretical details of basic photonic components descriptions were explained, and
the matrix formulation for calculating circuit’s stationary behavior was derived. Resonant circuits examples
were used as study cases throughout the tutorial for illustrating the realization of every modelling workflow
step.
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Results for several modeling studies were presented, highlighting different circuits properties that may be
analyzed with the described modeling workflow. Most of presented results were validated with previously
published results in academic literature.

This tutorial is published along with the in-house python-based software developed for implementing the
models. It can be obtained online as an open-access resource for the realization further studies.
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