
1 
 

POLARIZED LIGHT 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

       

    



Juan Campos Coloma juan.campos@uab.es 

Ángel Lizana Tutusaus angel.lizana@uab.cat 

Bellaterra, 29/06/2022 



2 
 

1 CONTENT 
2 Plane Waves Overview in non-absorbing media 3 

3 Light polarization states 4 

3.1 SUPERPOSITION OF TWO WAVES WITH PERPENDICULAR ELECTRICAL VECTORS 4 

3.2 Polarization ellipse 4 

3.3 Jones Vector 4 

3.4 Stokes & Mueller Formalism 5 

4 Polarizing Devices 8 

4.1 Jones Formalism 8 

4.1.1 Linear Polarizer 8 

4.1.2 Linear Wave-Plate 9 

4.1.3 Polarization Rotators 10 

4.1.4 Coordinates Transformation 11 

4.2 Mueller Formalism 12 

4.2.1 Linear Polarizer 12 

4.2.2 Retarder 12 

4.2.3 The Mueller Matrix of a Rotator 13 

4.2.4 Mueller Matrices for Rotated Polarizing Components 13 

4.3 Determination of the Polarization Type 14 

4.4 special devices 15 

4.4.1 Lyot-Öhman filter 15 

4.4.2 Solc filter 15 

5 User Interface 16 

5.1  DEFINITION OF INITIAL POLARIZATION 16 

5.2 CHANGE OF POLARIZATION BY A SET OF DEVICES 16 

5.3 SIMULATION OF A SET OF SCOTCH 17 

6 EXERCISES 19 

 

 



3 
 

2 PLANE WAVES OVERVIEW IN NON-ABSORBING MEDIA 
 

A harmonic plane wave can be written in complex notation as 

  .i ωte  k r
0E E  (0.1)  

Were  

 2 2  k μ ε ω  (0.2) 
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3 LIGHT POLARIZATION STATES 
 

3.1 SUPERPOSITION OF TWO WAVES WITH 

PERPENDICULAR ELECTRICAL VECTORS 
  

     

     
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Irradiance of an elliptically polarized wave 
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3.2 POLARIZATION ELLIPSE 
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3.3 JONES VECTOR 
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With         
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Two Jones vectors are orthogonal if 

 0JJ 21 


 (0.11) 

Decomposition in two orthogonal polarization states 
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 (0.12) 

 

3.4 STOKES & MUELLER FORMALISM 
The Stokes polarization parameters for a plane wave are given by 











0

1
P0











1

0
P90  

 









 sin

cos
P












i

1

2

1
R












i

1

2

1
L












i

2/1

5

2
J

 

  

x 

y 

 

 

  

x 

y 

y

 

  

x 
 

  

 
 

y

 

  

x 
 
  

 
 

y

 

  

x 
 

  

 
 

 

  

x 

y 

 

0,0 0,2 0,

2,4  2,4 

Figure 3-1. Some examples of Jones vector representation 
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The Stokes parameters enable us to describe the degree of polarization P for any state of polarization. By definition 

 

 
1

22 2 2
1 2 3

0

           0 P 1pol

tot

S S SI
P

I S

 
   

 (0.14) 

We recall that the ellipticity angle and the orientation angle for the polarization ellipse are given, respectively, by 
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Stokes vector 
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Linear Horizontally Polarized Light (LHP). For this case E0y = 0. 
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Linear Vertically Polarized Light (LVP). For this case E0x = 0. 

Figure 3-2.- Polarization State representation in the 
Poincaré Sphere 
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Linear +45º Polarized Light (L+45). E0x = E0y = E0 and = 0. 
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Linear -45º Polarized Light (L-45). E0x = E0y = E0 and = 180. 
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Right Circularly Polarized Light (RCP). E0x = E0y = E0 and  = 90º. 
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Left Circularly Polarized Light (LCP). E0x = E0y = E0 and = -90º. 
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4 POLARIZING DEVICES 
 

Let us consider linear devices that do not change the plane wave structure of the wave but change the polarization state. 

4.1 JONES FORMALISM 
 

They can be treated as 2x2 matrixes that transform the input polarization states into the corresponding output polarization 
states: The Jones matrixes 

 11 12
2 1

21 22

      where      
M M

J M J M
M M

 
    

 
 (0.24) 

 

 

 

 

 

 

 

 

 

 

4.1.1 Linear Polarizer 
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k
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k

 
  
   (0.25) 

Ideal 

 
  1 0
0

0 0PM
 

  
   (0.26) 

Totally transmits one of the components (transmission axis), and totally absorbs the other component (absorption axis). 

Luz
incidente

Luz
emergente

J1
J2

Dispositivo
de 

polarización

Figure 4-1 effect of a polarizing device on an input polarization beam 
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    
      

       (0.27) 

Malus Law 

Input Light    
 
 1

cos

sin
J P




 
  

 
    Exit Light   2 1

1 0 1
cos

0 0 0
J J 

   
     
   

  

4.1.2 Linear Wave-Plate 
  

Devices that introduce a phase shift between two orthogonal directions of the electric 
fields. Usually are anisotropic materials cutted with the optical axis parallel to the input 
face of the crystal. The ordinary and extraordinary waves travel with the same direction 
but with different speed, which produces the relative phase shift 

Jones matrix when the direction of the optical axis coincides with one of the axes 
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/2
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e e




 


  
    
     (0.28) 

 

 
 

0

2
e on n e




 
 (0.29) 

if  slow axis => x axis. 

 

In general, the wave retarders change the polarization state. Only the linear polarizations along the axis are not changed. 

Figure 4-2 Effect of an ideal linear polarizer 

Figure 4-3 Waves in a wave-plate 
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4.1.2.1 Quarter Wave plate:    

 
 

1 0
/ 2,0

0DM
j


 

  
   (0.30) 

Changes linear polarizations at ±45º with respect to the neutral lines in circularly polarized light 
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Changes circularly polarized light in linearly polarized light at ±45º with respect to the neutral lines  

 
1 2
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j

   
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4.1.2.2 Half Wave plate:    

  
1 0

,0
0 1DM 
 

   
 (0.33) 

Changes linear polarizations at º with respect to the neutral lines in linear polarizations at -º 

 
 

 
 

 
 

cos cos cos

sin sin sinin outJ J
  
  

     
              

 (0.34) 

 

Changes (R/L) circular light in (L/R) circular light 

 1 2

1 1
J J

j j

   
        

 (0.35)   

 

4.1.3 Polarization Rotators 
Rotate the polarization ellipse an angle  

      
   

cos sin

sin cosRM
 


 

 
  
 

 (0.36)

 

Example 
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  
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   
        

  (0.37) 
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
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
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
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4.1.4 Coordinates Transformation 
The above elements may present a rotation on the x,y plane. Then if we know the Jones matrix in a coordinate system, 
what is the Jones matrix in a rotated coordinate system? 

 

    'M R M R       (0.38) 

      
   

cos sin

sin cos
R

 
    

 


   (0.39) 

       Example: Linear polarizer rotated an angle . 

           
     

2

2

1 0 cos cos sin

0 0 cos sin sinPM R R
  

             

  
  

  
 (0.40) 

   0 0
90º

0 1PM
 

   
 

   

4.1.4.1 Cascaded Polarization Devices 
 

 

Figure 4-5Effect of cascaded polarizing devices 

  

 3 2 1 0...N NJ M M M M J      (0.41) 

 

 

 

 

 

 

 

Figure 4-4 Coordinates 
transformation 

Figure 4-6. Representation on the Poincaré sphere of the polarization 
transformations produced by:  

(a) rotators,  
(b) Linear Phase Shifters with the neutral axis on the x,y axis  
(c) Linear Phase Shifters with the neutral axis in an arbitrary direction (w)
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4.2 MUELLER FORMALISM 

 

0 00 01 02 03 0

1 10 11 12 13 1

2 20 21 22 23 2

3 30 31 32 33 3

'

'
     ' .

'

'

S m m m m S

S m m m m S
S M S

S m m m m S

S m m m m S

    
    
     
    
    
    

 (0.42) 

When an optical beam interacts with matter its polarization state is almost always changed. In fact, this appears to be the 
rule rather than the exception. The polarization state can be changed by (1) changing the amplitudes, (2) changing the 
phase, (3) changing the direction of the orthogonal field components, or (4) transferring energy from polarized states to 
the unpolarized state. 

 

4.2.1 Linear Polarizer 

 

2 2 2 2

2 2 2 2

,

0 0

0 01
        0 1

0 0 2 02

0 0 0 2

x y x y

x y x y
x y

x y

x y

p p p p

p p p p
M p

p p

p p

  
 

     
  
 

 (0.43) 

  

For a neutral density filter px = py = p 

 2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

M p

 
 
 
 
 
 

 (0.44) 

perfect linear polarizer if the transmission factor px is unity  

 

1 1 0 0

1 1 0 01

0 0 0 02

0 0 0 0

M

 
 
 
 
 
 

 (0.45) 

4.2.2 Retarder 
 

 

1 0 0 0

0 1 0 0

0 0 cos sin

0 0 sin cos

M
 
 

 
 
 
 
 

 

 (0.46) 

  

For a quarter-wave retarder 



13 
 

 

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

M

 
 
 
 
 

 

 (0.47) 

half-wave retarder 

 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

M

 
 
 
 
 

 

 (0.48) 

4.2.3 The Mueller Matrix of a Rotator 
 

  

1 0 0 0

0 cos 2 sin 2 0
2

0 sin 2 cos 2 0

0 0 0 1

M
 


 

 
 
 
 
 
 

 (0.49) 

We note that a physical rotation of  leads to the appearance of 2 rather than  because we are working in the intensity 
domain; in the amplitude domain we would expect just . 

 

4.2.4 Mueller Matrices for Rotated Polarizing Components 
 

      2 2 2R RM M MM      (0.50) 

Mueller matrix for an ideal linear rotated polarizer 

  
2

2

1 cos 2 sin 2 0

cos 2 cos 2 sin 2 cos 2 0
2

sin 2 sin 2 cos 2 sin 2 0

0 0 0 0

PM

 
   


   

 
 
 
 
 
 

 (0.51) 

 

Mueller matrix for the rotated retarder 

    
 

2 2

2 2
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0 cos 2 cos sin 2 1 cos sin 2 cos 2 sin sin 2
, 2

0 1 cos sin 2 cos 2 sin 2 cos cos 2 sin cos 2

0 sin sin 2 sin cos 2 cos

RM
       

 
       
    

 
    
  
 

 

 (0.52) 
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4.3 DETERMINATION OF THE POLARIZATION TYPE 

 

Figure 4-7. Determination of the polarization Type 
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4.4 SPECIAL DEVICES 

4.4.1 Lyot-Öhman filter 
A series of N parallel crystal plates are interspersed with polarizers and the retardation of each crystal is twice that of the 
preceding one. The crystals are aligned so that their axes are parallel to one another. The planes of polarization of the 
polarizers are inclined at 45◦ to the axes. It can be shown that the spectral transmittance of such a filter is given by the 
expression 

 

2

1
0

1

sin21

2 2

N

N
T T




 
  

 
  (0.53) 

Here 1  is the retardation of the thinnest component. T0 is a factor that allows for the light losses (mostly in the 

polarizers). Equation (21) represents a series of transmission peaks of half-width λ/(2Nξ1) that are separated from one 
another by a wavelength interval λ/ξ1. Light transmitted between any two adjacent peaks amounts to about 11% of the 
transmission within one peak. 

The largest stage sets the bandwidth, and the smallest stage sets the Free Spectral Range. If you use two of the second 
largest crystals, it will increase the contrast of the desired line. If you split the crystals in half and add a 1/2 waveplates in 
the middle, you can increase the field of view of the filter. The separation and narrowness of the transmission peaks 
depends on the number, thicknesses, and orientation of the plates. 

4.4.2 Solc filter 
 

It is composed of N identical birefringent crystal plates placed between two polarizers. Two variants of this filter exist. In 
the fan configuration the two polarizers are parallel to one another and the ith plate is inclined at an angle (i − 0.5)π/2N 
to them. 

The polarizers in the folded configuration are crossed, and the ith plate makes an angle (−1)iπ/4N with the first polarizer. 
The spectral transmittances of both configurations resemble the transmittances of Lyot- Öhman filters of similar overall 
thickness and with the thinnest crystal plate of same thickness as those of the components of the Solc filter. The main 
departures are that T0 for the Solc filters is about 0.72, which is much higher than that of Lyot- Öhman filters, and that the 
parasitic transmission is about 2.5 times as high 
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5 USER INTERFACE 
 

When the program starts, the main window appears. On the left are the tabs where you can enter the data and launch 
the different calculations. Results are shown on the right  

5.1  DEFINITION OF INITIAL POLARIZATION 
In the "Input" tab there are the different ways to enter 
the polarization state: 

 Jones vector 
 Polarization ellipse 
 Stokes parameters 

When any of the parameters of one of the 
representations is changed, the other representations are 
calculated. In addition, the polarization ellipse and the 
representation in the Poincaré sphere are shown 

 If the option to show 
animation is selected, a new 
window appears with the wave 
propagation and the 
polarization ellipse as a 
function of time 

If the check box “RT” is selected, then the animation tries to change the time in real time. If not, each time step 
of the animation is the same. 

By pressing the “Random Selection” button a random polarization state is generated  

By pressing the "Init Sphere" button, all the states drawn in the Poincaré sphere are deleted.  

 

5.2 CHANGE OF POLARIZATION BY A SET OF DEVICES 
You can define a set of devices that act in cascade in the "MM Cascade" tab. The steps to follow 
are: 

0.  The input polarization is the one defined in the previous tab "Input" 
1. First, we must define the number of devices that we are going to use by entering “Number 

of” and  
2. pressing the “Set Number” button. 
3.  Next, you must define the elements. For each of the elements you must select 

a.  Element number to define  
b. Element definition (see next section)  
c. Set the values by pressing the "Set Values" button. BEWARE you have to do it for each 

element. 
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b) DEFINITION OF THE POLARIZING ELEMENT. It is done in the box "Polarizing Device" 

 b1.- Select type: Polarizer, Wave Plate, or Rotator 

 b2.- Select the orientation, either on the dial or in the 
corresponding box. The Offset is added to this orientation 
(simulation of an offset with respect to the axis of the device that 
supports the element).  

b3.- If it is a not perfect polarizer, give the transmissions along the 
axes X and Y: Px, Py. 

b4.- If it is a wave plate, give the delay, either on the dial or in the 
corresponding box. 

 

You can also define the set of devices automatically by selecting one 
of the predefined sets in "Set-Up". The options that exist are: 

1 polarizer, 2 polarizers, 3 polarizers, Polarizer-WavePlate-Polarizer.  

Once the Set-Up has been selected, each of the elements must be defined as explained in b). 

 

There are 3 possible sets of outputs 

1. Polarization change 

2. Output Intensity as a function of a parameter 

3. Spectral dependence.  

In cases 1) and 2) you can change the parameter 

a) Orientation of the device selected in the "Element" box 

b) Delay of the device selected in the "Element" box (in the case of a sheet) 

In case 3) we assume that what changes is the device delay as a function of wavelength. The delay is 2pi (n * e)/ lambda. 
We will assume that the index n does not depend on the wavelength, and the only change comes from the lambda in the 
denominator. You can change the maximum delay of the delay dial in the “Max Ret” box. With which thick sheets can be 
simulated. The delay that is selected on the dial will be that of the initial lambda, then it decreases as the lambda increases. 
Assuming that the input composition of the light is white, with the same intensity in all lambdas, the approximate “color” 
at the output would be shown in the upper graph. 

5.3 SIMULATION OF A SET OF SCOTCH 
In the last tab "MM Transforms" there is a simulation of different zones. Each has a different set of retarder sheets with 
maximum delay given in “Retardance”. Each one has a different combination of up to 5 layers with different orientations 
and the same delay”. 

The transmission is calculated as a function of the wavelength and the distribution of approximate colors that would be 
obtained when illuminating with the initial polarization and a polarizer at the output with the given orientation is drawn. 
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6 EXERCISES 
1) Play with the values of , ,x yE E   (amplitudes of both components and phase difference) and see the evolution of the 

ellipse. Pay special attention when 0,   ,   / 2,   3 / 2     in the last two cases, what happens if both amplitudes 
are equal? 

2) Show that the addition of two circular polarization states R and L with the same amplitude and a phase difference d, 
is a linear polarization state rotated half of the phase difference 

3) Generate a linear polarization state with a given azimuth. In the tab “MM transformations” a) select the retardance 
of the wave plate (for instance 90º) b) change the Retarder Orientation and NOTE that when it coincides with the 
azimuth or perpendicular to the azimuth the output polarization state is the same as the input one. Note that at these 
orientations the output polarization state is independent of the wave-plate retardance (change the retardance) 

4) Demonstrate that two /2 wave-plates act as a polarization rotator of an angle equal to twice the angle between both. 
Use the polarization applet (PA) to visualize this. First select an input polarization state in the tab “Input Polarization”, 
then, in the tab “MMtransformations”, set the retardance of both wave-plates to 180º, select the button “Activate 
2nd retarder” and change the Orientation of one of the retarder. You will visualize the output Stokes, Azimuth, and 
ellipticity, and you can see the polarization ellipse and the Poincaré Sphere. If the button “Continuous Draw” is on, 
then you can see the evolution of the output polarization state. Does the Ellipticity change? 

5) Demonstrate that with a linear polarizer at 0º and two variable wave-plates oriented at 45º and at 0º respectively it 
is possible to obtain any polarization state. What are the retardances needed to obtain a given Stokes vector? NOTE 

that the solution is not unique when the wave-plates retardation range is  0 360  .  

Use the tab “MM transformations”, set the retarder orientations, set the “activate de 2nd retarder2” button to on and 
the “Continuous Draw”. Change the retardance of the first retarder gradually until arrive to the desired retardance, 
and then make the same with the second retarder to visualize the trajectory of the polarization on the Poincaré 
Sphere. Try to obtain the following output polarization states: 
a) Linear at 45º, Linear at 22.5º, … Note that in this case, in one of the solutions, the retardance of the first retarder 

should be twice the final azimuth, and the retardance of the second retarder should be 90º. 
b) …. 

6) Let us assume that we have a linear polarizer and a wave plate. How can we obtain circularly polarized light? Is it 
possible to obtain it with arbitrary retardance of the wave plate? Show this with the applet. 

7) Let us assume we have a linear polarizer and a variable wave-plate that we can rotate. Is it possible to obtain any 
polarization state? If yes, what should be the orientation of both devices and retardance of the wave-plate? 
Implement this in the Polarization applet. 

8) Let us assume that we have two linear polarizers and a quarter-wave plate, but we do not know the location of the 
respective axis. We can measure the light intensity but not its polarization. Describe a method to obtain circularly 
polarized light. Implement it in the polarization applet. 

9) Generate a polarization state randomly. Use the protocol shown in ¡Error! No se encuentra el origen de la referencia. 
to determine the polarization type. 

10) A quarter wave plate is rotated between two crossed Polaroids. If an un-polarized beam is incident on the first 
Polaroid, discuss the variation of intensity of the emergent beam as the quarter wave plate is rotated. What will 
happen if we have a half wave instead of a quarter wave plate? 

11) (a) Consider two crossed Polaroids placed in the path of an unpolarized beam of intensity I0 (see Fig. 22.6). If we place 
a third Polaroid in between the two, then, in general, some light will be transmitted through. Explain this 
phenomenon. (b) Assuming the pass axis of the third Polaroid to be at 45° to the pass axis of either of the Polaroids, 
calculate the intensity of the transmitted beam. Assume that all the Polaroids are perfect. 
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12) Consider we have two crossed polarizers and a variable wave-plate between them. (a) Evaluate the output irradiance 
as a function of the retardance. (b) What should be the wave-plate orientation to obtain the maximum contrast? (c) 
Implement this set-up in the polarization applet. 

13) Design a Lyot filter win a bandwidth of 0.1 nm at =656.3nm. Find the required thickness of the thickest plate. 
14)   [3] Create a source of unknown elliptical polarization by reflecting a linearly polarized laser beam (with both s and p-

components) from a metal mirror with a large incident angle (i.e. >80º). Use a quarterwave plate and a polarizer to 
determine the Jones vector of the reflected beam. 
Find the ellipticity, the helicity (right or left handed), 
and the orientation of the major axis. HINT: A polarizer 
alone can reveal the direction of the major and minor 
axes and the ellipticity, but it does not reveal the 
helicity. Use a quarterwave plate (oriented at a special 
angle µ) to convert the unknown elliptically polarized 
light into linearly polarized light. A subsequent 

polarizer can then extinguish the light, from which you can determine the Jones vector of the light coming through 
the wave plate. This must equal the original (unknown) Jones vector (6.11) operated on by the wave plate (6.37). As 
you solve the matrix equation, it is helpful to note that the inverse of (6.37) is its own complex conjugate. 

15)  [3] Un haz de luz linearmente polarizado a 45º es reflejado por un espejo de plata con un ángulo de incidencia de 80º 
(como en el problema anterior). ¿Cuál es el vector de Jones de la luz reflejada? 

16)  [3] Calcule el ángulo de corte  de un vidrio en un rombo de Fresnel para que después 
de dos reflexiones haya una diferencia de fase de /2 entre los dos estados de 
polarización, de tal manera que actúe como una lámina de cuarto de onda. NOTA: la 
solución analítica puede ser complicada. Haga un dibujo para encontrar una solución 
numérica. SOLUCIÓN: hay dos ánguloa que funcionan =50º, y 53º 

17)  [3] Una manera de construir un polarizador dircular dextrógiro es mediante una lámina 
/4 con el eje rápido a 45º, seguida de un polarizador lineal orientado vertical y de una lámina de /4 con el eje rápido 
a -45º. Calcule la matriz de Jones del dispositivo. Copruebe que este dispositivo no cambia la luz polarizada circular 
dextrógira, mientras que absorbe la luz polarizada circular levógira. 

 


